Como fazer raiz quadrada de modo facil

TEXTO ELABORADO POR: Professor Carlos Alberto

Entre as matérias que os alunos devem estudar a matemática pode ser considerada uma das que mais causam dificuldades. Pensando nisso, resolvemos trazer algumas dicas para te ajudar a resolver as questões dessa matéria com mais facilidade, seja nas suas atividades escolares ou nas questões do ENEM e vestibulares.

Confira o macete de hoje:

Calcular RAIZ QUADRADA é uma dor de cabeça, não acha? Que tal formar grupos depois de uma decomposição? 

Observe que o processo serve para qualquer raiz de qualquer índice!

Como fazer raiz quadrada de modo facil

1) Primeiro passo: faça uma decomposição em fatores primos, fatorando o número usando divisões com números primos. Do lado direito forme o grupo.

Faça da seguinte forma:

2) O grupo que iremos formar, após a decomposição, tem a quantidade de elementos igual ao índice da raiz, portanto, se a raiz for quadrada o grupo terá 2 elementos, se for cúbica terá 3 elementos e assim por diante.

3) Após isso, circule um dos elementos do grupo e cancele o outro.

4) Por último, multiplique os valores circulados, encontrando o resultado da raiz.

 Exemplo:

Como fazer raiz quadrada de modo facil

Vamos seguir o passo a passo acima:

Como fazer raiz quadrada de modo facil

­4) multiplicamos os números circulados que são 2.2.2 = 8

Como fazer raiz quadrada de modo facil

Mais um exemplo:

Como fazer raiz quadrada de modo facil

Como fazer raiz quadrada de modo facil

4) multiplicamos os números circulados que são 2.2 = 4

Como fazer raiz quadrada de modo facil

Agora que já temos alguns exemplos, vamos ver de uma forma mais contextualizada:

VAMOS APLICAR!

1. (ENEM 2010) Embora o índice de massa corporal (IMC) seja amplamente utilizado, existem ainda inúmeras restrições teóricas ao uso e às faixas de normalidade preconizadas. O recíproco do índice ponderal (rip), de acordo com o modelo alométrico, possui uma melhor fundamentação matemática, já que a massa é uma variável de dimensões cúbicas e a altura, uma variável de dimensões lineares. As fórmulas que determinam esses índices são:

                                                     

Como fazer raiz quadrada de modo facil

Se uma menina, com 64 kg de massa, apresenta IMC igual a 25 kg/m2, então ela possui rip igual a

  1.  0,4 cm/kg1/3
  2.  2,5 cm/kg1/3
  3.  8 cm/kg1/3
  4.  20 cm/kg1/3
  5.  40 cm/kg1/3


RESOLUÇÃO:

Descobrindo a altura:

Sabemos pela fórmula que:   

Como fazer raiz quadrada de modo facil
  e que o IMC da menina é 25 kg/m²,  então:

                             

Como fazer raiz quadrada de modo facil

Descobrindo o rip:

 

Como fazer raiz quadrada de modo facil

Pois:

Como fazer raiz quadrada de modo facil

RESPOSTA: LETRA E

Esperamos que essa dica tenha te ajudado! Em breve, estaremos trazendo mais macetes para facilitar sua vida com a matemática, fique atento(a)! Sucesso nos estudos!

Quer ficar por dentro de dicas de estudos e conteúdos relacionados ao ENEM? Então, além de ficar atento(a) ao nosso blog, acompanhe também nosso Instagram e YouTube! Estamos sempre trazendo novidades.

Preparação de qualidade para o ENEM?
Conheça nossa plataforma: www.pensaread.com.br/

A raiz quadrada é uma operação básica e importante da Matemática. Se trata da operação inversa da potenciação. Assim, calcular a raiz quadrada de um número n é descobrir qual número elevado ao quadrado resulta em n. Por exemplo, a raiz quadrada de 9 é igual a 3, pois, 3² é 9. Uma raiz quadrada pode ser exata, gerando um número chamado de quadrado perfeito, ou pode ser não exata.

Leia também: Expressões numéricas — o conjunto de operações fundamentais a serem calculadas

Resumo sobre raiz quadrada

  • A raiz quadrada é uma radiciação que possui o índice igual a 2.

  • Ela é a operação inversa de uma potência de expoente 2.

  • Seus elementos fundamentais são: índice, radical, radicando e raiz.

  • A raiz quadrada de um número a é representada por √a.

  • Pode ser exata ou não exata.

Videoaula sobre raiz quadrada

A radiciação é uma das operações básicas da Matemática, sendo a operação inversa da potência. Existem vários tipos de raiz, como a raiz cúbica e a raiz quarta, mas a mais utilizada é a raiz quadrada.

Quando calculamos, por exemplo, a raiz quadrada de um número a, o resultado dessa operação será o número que, ao elevarmos ao quadrado, resultará em a. Os outros casos de radiciação seguem o mesmo raciocínio. A raiz cúbica de um número x é o número cujo cubo é igual a x. Dizemos, por exemplo, que a raiz cúbica de 27 é 3, pois 3³ = 27. De forma semelhante, dizemos que a raiz quadrada de 81 é 9, pois 9² = 81.

O que é raiz quadrada?

A raiz quadrada é um caso particular da radiciação, sendo o mais comum deles. Conhecemos como raiz quadrada a radiciação com índice igual a 2. A raiz quadrada é a operação inversa da potência com o expoente 2, pois quando calculamos a raiz quadrada de um número a, estamos procurando qual número ao quadrado é igual a a. Quando o radical não apresenta número no índice, calcula-se a raiz quadrada do radicando.

Exemplos:

√4 = 2, pois 2² = 4

√9 = 3, pois 3² = 9

√16 = 4, pois 4² = 16

√25 = 5, pois 5² = 25

Como calcular a raiz quadrada?

Para calcular a raiz quadrada de um número, geralmente recorremos à tabuada. Entretanto, quando o número é maior que 100, é possível utilizar o processo de fatoração para calcular a raiz quadrada exata.

Ao realizar uma fatoração, agrupamos os fatores de dois em dois, já que é a raiz quadrada exata que estamos buscando. Já quando estamos calculando uma raiz quadrada não exata, utilizamos aproximações.

Saiba também: Propriedades dos radicais — simplificam e resolvem raízes de qualquer índice

A raiz quadrada exata ocorre quando o resultado da operação é um número racional. Os exemplos supracitados são casos de raiz quadrada exata. Por exemplo, a √16 é exata porque o seu resultado é 4, que é um número racional. Quando há no radicando um número com raiz quadrada desconhecida, utilizamos fatoração para calcular uma raiz exata.

Exemplo:

Calcule o valor da √324.

Resolução:

Para encontrar a √324, inicialmente fatoraremos esse número:

Dessa forma, calcula-se:

√0 = 0

√1 = 1

√4 = 2

√9 = 3

√16 = 4

√25 = 5

√36 = 6

√49 = 7

√64 = 8

√81 = 9

√100 = 10

Os números que possuem raiz quadrada exata são conhecidos como quadrados perfeitos.

Em muitos casos, o número pode não possuir uma raiz quadrada exata, ou seja, a solução da raiz quadrada é um número irracional. Para calcular uma raiz quadrada não exata, utilizamos aproximações, ou seja, números que quando elevamos ao quadrado chegam bem próximo do resultado desejado.

Exemplo:

Calcule o valor da √60.

Resolução:

Sabemos que essa raiz não é exata, então, primeiramente, identificaremos qual é o número anterior a 60 que possui raiz exata, que é 49, e também o número posterior a 60 que possui raiz exata, que é 64.

√49 < √60 < √64

Calculando as raízes de 49 e 64:

7 < √60 < 8

Note que 60 está próximo de 64, então a √60 estará próxima de 8. Calcularemos, assim, o quadrado dos números próximos a 8.

7,9² = 62,41

7,8² = 60,84

7,7² = 59,29

Descobrimos que a √60 está entre 7,7 e 7,8.

Portanto, dizemos que a √60 = 7,7 por falta ou que a √60 = 7,8 por excesso.

Exercícios resolvidos sobre raiz quadrada

Questão 1

(Ethos concursos) A raiz quadrada de um número é uma importante operação matemática, assim como a adição, a subtração, a multiplicação e a divisão. Somente alguns números possuem raiz quadrada, aqueles considerados quadrados perfeitos. Sendo assim, calcule a raiz quadrada de 625 e assinale a alternativa CORRETA.

A) 35

B) 24

C) 25

D) 17

E) 49

Resolução:

Alternativa C

Inicialmente, realizaremos a fatoração do número:

Dessa forma, temos:

√625 = √54

√625 = 5²

√625 = 25

Questão 2

Sobre a raiz quadrada, julgue as afirmativas a seguir:

I → É possível calcular a raiz quadrada de número negativo.

II → Os números 0, 1, 4, 9 e 16 são todos quadrados perfeitos menores que 20.

III → A raiz quadrada de 6 é igual a 3.

As afirmativas são, respectivamente:

A) V, V e V.

B) F, F e F.

C) F, F e V.

D) F, V e F.

E) V, F e V.

Resolução:

Alternativa D

I → Falsa

A potência de dois possui resultado somente positivo, logo, não é possível calcular a raiz quadrada de um número negativo.

II → Verdadeira

Os números listados são os únicos que possuem raiz exata menores que 30.

III → Falsa

3² = 9, logo, a raiz quadrada de 9 é 3, e não a de 6.