Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
Foto: Shutterstock

Quando você termina um treino intenso, sabe que você queimou um número significativo de calorias. Mas o que você pode não perceber é que seu corpo continua a queimar calorias mesmo não está mais correndo. Esse processo é chamado de excesso de consumo de oxigênio pós-exercício (efeito EPOC).

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos

+ 8 exercícios de baixo impacto que queimam muitas calorias
+ Corrida ou caminhada: o que é melhor para emagrecer?

Conversamos com dois especialistas certificados em força e condicionamento para saber o que é o EPOC e o que isso significa para os corredores.

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos

O que é o EPOC?

O EPOC é simplesmente a maneira como o corpo relaxa após o exercício. Nossos corpos usam oxigênio para produzir energia enquanto nos exercitamos, e exercícios que usam mais oxigênio – tudo que é de alta intensidade, como um treino intervalado – queima mais calorias.

Após o exercício, seu corpo precisa reequilibrar seus hormônios, reabastecer seus estoques de combustível e reparar células e tecidos musculares danificados para ajudá-lo a retornar ao seu estado normal, segundo Janet Hamilton, proprietária da Running Strong, nos Estados Unidade. Para isso, você gasta energia. Como resultado, seu corpo continua a queimar calorias mesmo depois que seu treino é concluído.

Quer ver ficar mais fácil? Pense no seu corpo como se fosse um carro. “Se você fizer uma longa viagem e desligar seu carro, seu carro não ficará frio automaticamente”, explica o personal trainer Pete McCall. “Ele ainda ficará quente no período de uma a cinco horas depois.”

Como isso afeta os corredores?

Quanto mais intenso for o seu treino, mais EPOC você terá. Isso porque, para que o EPOC ocorra, seus músculos precisam trabalhar até um ponto de fadiga. Então, se você está fazendo um trabalho de velocidade ou treinamento de força, teoricamente, você deve esgotar a energia dos músculos ao final da sessão, de acordo com McCall.

Dito isto, a quantidade de calorias que uma pessoa média vai queimar com EPOC não é tanto quanto você imagina.

“Se você fizer um exercício moderado a intenso, terá um efeito EPOC de duas a dez horas. Mas não é significativo – pode estar em qualquer lugar entre 150 e 200 calorias durante esse período, o que é apenas cerca de 20 calorias por hora, no máximo”, diz McCall. De fato, de acordo com pesquisa publicada na Applied Physiology Nutrition and Metabolism, ciclistas e corredores que participaram do treinamento intervalado de velocidade queimaram entre 45 a 65 calorias nas primeiras duas horas após o treinamento.

O efeito EPOC de uma corrida mais longa e lenta não é tão grande porque você nunca esgota a energia dos músculos durante todo o percurso.

Conclusão

Como um corredor, é definitivamente uma boa ideia incorporar sessões de treino de alta intensidade à sua rotina. Incluir um treino de força, por exemplo, não só permitirá que o efeito EPOC ocorra, como também poderá ajudar a aumentar sua resistência, força e velocidade na corrida.

Embora você não vá queimar uma quantidade enorme de calorias após o treino, já é alguma coisa. Apenas tenha em mente que não é o suficiente para compensar aquele frappuccino de 500 calorias que você está querendo tomar depois do treino.

“No entanto, como ainda há queima extra de calorias, você também não quer se arriscar a comer menos do que deveria”, alerta Hamilton. Você precisa consumir o suficiente para compensar o número de calorias queimadas durante e depois do treino.

“Se você já está dando ao seu corpo a menor quantidade de combustível possível, o reparo e a regeneração do tecido muscular [após um treino intenso] provavelmente será prejudicado, e é aí que você se depara com lesões” ela diz.

McCall concorda. Sua sugestão é escalonar os treinos, assim , se você fizer um dia de alta intensidade, você deve fazer algo com intensidade menor no dia seguinte. Isso porque, depois de um treino de alta intensidade, seus músculos podem não ter se recuperado 100%. Lembre-se, você não quer que eles trabalhem tanto quanto antes, mas que o seu corpo seja capaz de se sustentar daqui para frente.

Giselle Foureaux Kelerson Mauro de Castro Pinto Ana Dâmaso Sobre os autores

A crescente prevalência de obesidade e sobrepeso ressalta a necessidade de intervenções para reverter esse quadro. Nesse contexto, a atividade física pode contribuir com um efeito duplo, por meio de mudanças fisiológicas agudas e crônicas: na primeira condição encontra-se o gasto energético do exercício e recuperação (EPOC - consumo excessivo de oxigênio após o exercício), e na segunda encontra-se a taxa metabólica de repouso (TMR). Dessa forma, o objetivo deste trabalho de revisão foi investigar o efeito do EPOC e da TMR como coadjuvantes nos programas de emagrecimento, buscando discutir os divergentes resultados encontrados na literatura, no que diz respeito à magnitude e duração do EPOC, bem como discutir o efeito do exercício na TMR. Os estudos demonstram, de forma geral, que o exercício de maior intensidade é capaz de promover maior EPOC, se comparado com um exercício de intensidade menor e, quando comparam o exercício resistido com o aeróbio, verifica-se maior EPOC no primeiro. Em relação às alterações da TMR, os resultados agudos mostram aumento significativo, porém os resultados em longo prazo são mais discrepantes, devido à dificuldade de mensurar essa variável, sem superestimá-la. Concluindo, a literatura aponta que a periodização de um treinamento que possa maximizar tanto o EPOC quanto a TMR podem ser importantes fatores para o emagrecimento e, embora, o custo energético dessas variáveis em uma sessão de exercício se mostre pequeno, em longo prazo poderá ser bastante significativo. No entanto, novos estudos deverão ser realizados com o intuito de confirmar essas evidências.

Obesidade; Emagrecimento; EPOC; TMR

La creciente prevalencia de la obesidad y el sobrepeso resalta la necesidad de intervenciones para reverter ese cuadro. En ese contexto, la actividad física puede contribuir con un doble efecto, por medio de cambios fisiológicos agudos y crónicos: en la primera condición se encuentra desgaste energético del ejercicio y recuperación (EPOC - consumo excesivo de oxígeno después del ejercicio), y en la segunda se encuentra la tasa metabólica de reposo (TMR). De esta forma, el objetivo de este trabajo de revisión ha sido el de investigar el efecto de EPOC y de TMR como coadyuvantes en los programas de adelgazamiento, buscando discutir los divergentes resultados encontrados en la literatura, en lo que se refiere a la magnitud y duración de EPOC, así como discutir el efecto del ejercicio en TMR. Los estudios demostraron, de una forma general, que el ejercicio de mayor intensidad es capaz de promover un mayor EPOC, al ser comparado con un ejercicio de intensidad menor y, cuando compararon el ejercicio de resistencia con el aeróbico, se verifica un mayor EPOC en el primero. En relación a las alteraciones de TMR, los resultados agudos muestran un aumento significativo, pero los resultados a largo plazo son más discrepantes, debido a la dificultad de medir esa variable, sin superestimarla. En conclusión, la literatura apunta que la periodicidad de un entrenamiento que pueda maximizar tanto EPOC como TMR, que pueden ser importantes factores para adelgazamiento, a pesar del costo energético de esas variables en una sesión de ejercicio se muestre pequeño, a largo plazo podrá ser bastante significativo. Sin embargo, nuevos estudios deberán ser realizados con el intuito de confirmar estas evidencias.

Obesidad; Adelgazamiento; EPOC; TMR

The constant growth of obesity and overweight only goes to show the need of intervention to reverse those figures. In this context, physical activity can contribute with a double effect, through acute and chronic physiological changes: in the first condition one can find the energetic cost from exercising and recovery (EPOC - excess post-exercise oxygen consumption), and in the second, the resting metabolic rate (RMR). Thus, this revision's goal was to investigate the effect of EPOC and RMR as supporting factors in weight-control programs, willing to discuss the different results found in literature, concerning both magnitude and length of EPOC, as well as discussing the effects of exercising in RMR. Research shows, in general terms, that the most intense exercises are able to promote a bigger EPOC when compared to exercises of lower intensity, while a bigger EPOC was found in resistive exercises when compared to aerobic ones. Concerning RMR changes, the acute results show significant increase at it; however, long-term results are more discrepant, due to the difficulty in measuring this variable without overestimating it. In summary, literature points that periodicity of a training that can maximize both EPOC and RMR may be an important factor to weight-losing and, although energetic cost of these variables in a therapy session seem rather small, it can be significant in a long-term relation. However, new studies are important to confirm these evidences.

Obesity; Weight loss; EPOC; RMR

ARTIGO DE REVISÃO

Efeito do consumo excessivo de oxigênio após exercício e da taxa metabólica de repouso no gasto energético

Efecto del consumo excesivo de oxígeno después del ejercicio y de la tasa metabólica de reposo en el desgaste energético

Giselle FoureauxI, II; Kelerson Mauro de Castro PintoI; Ana DâmasoII

ICentro Universitário de Belo Horizonte, BH, MG

IIUniversidade Federal de São Paulo – Escola Paulista de Medicina – UNIFESP-EPM

Endereço para correspondência

RESUMO

A crescente prevalência de obesidade e sobrepeso ressalta a necessidade de intervenções para reverter esse quadro. Nesse contexto, a atividade física pode contribuir com um efeito duplo, por meio de mudanças fisiológicas agudas e crônicas: na primeira condição encontra-se o gasto energético do exercício e recuperação (EPOC – consumo excessivo de oxigênio após o exercício), e na segunda encontra-se a taxa metabólica de repouso (TMR). Dessa forma, o objetivo deste trabalho de revisão foi investigar o efeito do EPOC e da TMR como coadjuvantes nos programas de emagrecimento, buscando discutir os divergentes resultados encontrados na literatura, no que diz respeito à magnitude e duração do EPOC, bem como discutir o efeito do exercício na TMR. Os estudos demonstram, de forma geral, que o exercício de maior intensidade é capaz de promover maior EPOC, se comparado com um exercício de intensidade menor e, quando comparam o exercício resistido com o aeróbio, verifica-se maior EPOC no primeiro. Em relação às alterações da TMR, os resultados agudos mostram aumento significativo, porém os resultados em longo prazo são mais discrepantes, devido à dificuldade de mensurar essa variável, sem superestimá-la. Concluindo, a literatura aponta que a periodização de um treinamento que possa maximizar tanto o EPOC quanto a TMR podem ser importantes fatores para o emagrecimento e, embora, o custo energético dessas variáveis em uma sessão de exercício se mostre pequeno, em longo prazo poderá ser bastante significativo. No entanto, novos estudos deverão ser realizados com o intuito de confirmar essas evidências.

Palavras-chave: Obesidade. Emagrecimento. EPOC. TMR.

RESUMEN

La creciente prevalencia de la obesidad y el sobrepeso resalta la necesidad de intervenciones para reverter ese cuadro. En ese contexto, la actividad física puede contribuir con un doble efecto, por medio de cambios fisiológicos agudos y crónicos: en la primera condición se encuentra desgaste energético del ejercicio y recuperación (EPOC – consumo excesivo de oxígeno después del ejercicio), y en la segunda se encuentra la tasa metabólica de reposo (TMR). De esta forma, el objetivo de este trabajo de revisión ha sido el de investigar el efecto de EPOC y de TMR como coadyuvantes en los programas de adelgazamiento, buscando discutir los divergentes resultados encontrados en la literatura, en lo que se refiere a la magnitud y duración de EPOC, así como discutir el efecto del ejercicio en TMR. Los estudios demostraron, de una forma general, que el ejercicio de mayor intensidad es capaz de promover un mayor EPOC, al ser comparado con un ejercicio de intensidad menor y, cuando compararon el ejercicio de resistencia con el aeróbico, se verifica un mayor EPOC en el primero. En relación a las alteraciones de TMR, los resultados agudos muestran un aumento significativo, pero los resultados a largo plazo son más discrepantes, debido a la dificultad de medir esa variable, sin superestimarla. En conclusión, la literatura apunta que la periodicidad de un entrenamiento que pueda maximizar tanto EPOC como TMR, que pueden ser importantes factores para adelgazamiento, a pesar del costo energético de esas variables en una sesión de ejercicio se muestre pequeño, a largo plazo podrá ser bastante significativo. Sin embargo, nuevos estudios deberán ser realizados con el intuito de confirmar estas evidencias.

Palabras-clave: Obesidad. Adelgazamiento. EPOC. TMR.

INTRODUÇÃO

O gasto energético diário pode ser dividido em três componentes: TMR (taxa metabólica de repouso), efeito térmico do alimento e gasto energético associado com a atividade física(1). A atividade física promove aumento do gasto energético total tanto de forma aguda quanto de forma crônica. A primeira condição refere-se ao próprio gasto energético durante a realização do exercício e durante a fase de recuperação; já a segunda refere-se às alterações da taxa metabólica de repouso – TMR(2).

No que diz respeito ao efeito agudo, está bem estabelecido que, após o término do exercício, o consumo de O2 não retorna aos valores de repouso imediatamente. Essa demanda energética durante o período de recuperação após o exercício é conhecida como consumo excessivo de oxigênio após o exercício, ou ainda, excess posterxercise oxygen consumption – EPOC(3).

O excesso de consumo de oxigênio após o exercício consiste em um componente rápido e um componente prolongado. O componente rápido do EPOC ocorre dentro de 1h(4). Embora a causa precisa dessas respostas não esteja bem esclarecida, é provável que esses fatores contribuam para: a ressíntese de ATP/CP, redistribuição comportamental dos íons (aumento na atividade da bomba de sódio e potássio), remoção do lactato, restauração do dano tecidual, assim como restauração do aumento da FC e do aumento da temperatura corporal(4-8). Durante o componente prolongado, processos para o retorno da homeostase fisiológica ocorrem continuamente, porém em um nível mais baixo. Esses processos podem incluir o ciclo de Krebs com maior utilização de ácidos graxos livres(4,6); efeitos de vários hormônios, como o cortisol, insulina, ACTH, hormônios da tireóide e GH(5); ressíntese de hemoglobina e mioglobina(7); aumento da atividade simpática(7); aumento da respiração mitocondrial pelo aumento da concentração de norepinefrina(9); ressíntese de glicogênio, aumento da temperatura(10).

Têm sido discrepantes ainda os resultados dos diversos estudos no que diz respeito à magnitude e duração do EPOC. Enquanto vários estudos demonstram que o EPOC pode permanecer por horas(4,5,7,10-15), outros têm concluído que o EPOC é transitivo e mínimo(14,16-18).

Vários trabalhos têm analisado a contribuição do EPOC em programas de emagrecimento, visto que este é o resultado de um balanço energético diário negativo entre consumo e gasto energético(19). Bahr et al.(10) já haviam considerado o EPOC como um importante fator no controle do peso, uma vez que o exercício demanda uma energia extra além da prevista na atividade física. Em corroboração, outros estudos relataram que a magnitude do metabolismo elevado durante a recuperação tem implicação importante na prescrição de programas de redução ponderal(9,12-13,19-20).

A redução ponderal também está relacionada às alterações crônicas da atividade física, ou seja, da taxa metabólica de repouso (TMR). A TMR é definida como o gasto energético necessário à manutenção dos processos fisiológicos no estado pós-absortivo, chegando a compreender até 60-70% do gasto energético total, dependendo do nível de atividade física(21).

Todo esse interesse na redução ponderal deve-se ao fato de a obesidade, atualmente, ser considerada pela Organização Mundial de Saúde um problema de saúde pública(22). Uma estimativa considerando a prevalência de pessoas obesas atualmente ressalta que, se essa proporção se mantiver, no ano de 2230, 100% da população norte-americana será obesa(23). Analisando a realidade brasileira, Meirelles e Gomes(21) mostraram que, no Rio de Janeiro, 44% dos homens e 33% das mulheres na faixa etária de 26 a 45 anos apresentam sobrepeso ou obesidade.

Embora a obesidade esteja relacionada a diversas causas, como as genéticas, fisiológicas, metabólicas, ambientais, emocionais e culturais, toda a atenção dada no sentido de aumentar o gasto energético diário total é de grande valia, uma vez que o balanço energético é determinado, de um lado, pelo consumo e, de outro, pelo dispêndio de energia(21,24), sendo que um desequilíbrio energético positivo pode levar ao acúmulo excessivo de energia armazenada como gordura corporal.

Dessa forma, o objetivo deste trabalho de revisão foi investigar o efeito do EPOC e da TMR no gasto energético, buscando discutir os divergentes resultados encontrados na literatura, no que diz respeito à magnitude e duração do EPOC, bem como discutir o efeito do exercício na TMR.

DESENVOLVIMENTO

Efeito do EPOC no aumento do gasto energético diário total com o exercício aeróbio

As disparidades nos resultados relacionados ao EPOC podem refletir diferenças em muitos fatores, como: massa muscular envolvida no exercício; intensidade e duração; estado do treinamento; ingestão de alimento (efeito térmico da refeição); qualidade do sono da noite anterior; condições ambientais; familiaridade do sujeito com o protocolo; variações na temperatura e nas concentrações de catecolaminas; custo metabólico da remoção do lactato; utilização do substrato e fase do ciclo menstrual, no caso das mulheres(25); ansiedade pré-exercício; ritmo circadiano; o fato de que a maioria dos estudos não analisou os mesmos indivíduos(20); presença de overtraining, em casos de atletas.

O EPOC aumenta linearmente com a duração do exercício(10). Porém, a intensidade do exercício parece afetar tanto a magnitude quanto a duração do EPOC; já a duração do exercício afeta apenas a duração do EPOC(12).

Dessa forma, os estudos têm sugerido que o exercício de maior intensidade produz elevação mais prolongada no EPOC do que exercícios de intensidades menores (quando possuem volume equivalente), devido ao fato de este causar maior estresse metabólico, sendo necessário, então, maior dispêndio de energia para retornar à condição de homeostase(5,13-14). Além disso, maior nível de atividade do sistema nervoso simpático (estimulado pelas catecolaminas) também pode contribuir para elevar a taxa metabólica pós-exercício, visto que a epinefrina e a norepinefrina estimulam a respiração mitocondrial e a função celular, facilitando a passagem de sódio e potássio através da membrana celular, aumentando a produção de ATP e o uso de oxigênio(7,9,26).

Existe aumento de 20 a 35% na responsividade lipolítica no adipócito após o exercício(4,6). Contudo, a taxa de oxidação de lipídios ainda é maior após exercício de alta intensidade, uma vez que a síntese de glicogênio é aumentada para repor o glicogênio utilizado. A oxidação de lipídios também está associada com o aumento do turnover dos ácidos graxos livres; concomitantemente, o aumento do turnover de proteína também pode contribuir para maior EPOC(19). Além desses fatores, o exercício de maior intensidade está associado com maior ressíntese de hemoglobina e mioglobina(27) e parece estar associado também de forma inversa com as taxas de obesidade(28).

Alguns trabalhos analisaram o EPOC e o gasto energético comparando protocolos de exercício contínuo e intervalado submáximos(20,29) e exercício contínuo submáximo e intervalado supramáximo(13). Todos esses estudos demonstraram maior gasto energético para os exercícios mais intensos. Partindo-se do princípio de que é possível realizar mais minutos a alta intensidade com o exercício intermitente se comparado com o exercício contínuo(13), pessoas com sobrepeso podem exercitar-se por tempo menor a uma intensidade que produza um EPOC maior, visto que na maioria das vezes essas pessoas, além de descondicionadas, têm aversão à atividade física.

Porém, deve-se ressaltar que o EPOC é relativamente curto após exercícios de intensidade e duração moderada, < 70% do

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
O2máx. e/ou < 60 minutos(12,25,30), visto que magnitude do EPOC após o exercício aeróbio depende de ambos os fatores (intensidade e duração do exercício). Por outro lado, exercícios com duração > 60 minutos e/ou com intensidade > que 70% do
Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
O2máx. parecem estar relacionados a um EPOC prolongado(4,7,10,12-13). Tem sido proposto, ainda, que para as pessoas que querem emagrecer, a magnitude do EPOC (custo energético) é mais importante que a duração(25).

Efeito do EPOC no aumento do gasto energético diário total com o exercício resistido

Os estudos que compararam o exercício resistido com o aeróbio(31-32) enfatizaram que o resistido, provavelmente, causaria maior distúrbio na homeostase que o exercício aeróbio, sugerindo que este, devido às altas intensidades envolvidas, poderia requerer maior gasto energético, tanto durante o exercício quanto durante a recuperação. Além disso, analisando agora somente o exercício resistido, também é sugerido que um protocolo mais extenuante é mais eficaz no controle de peso(15).

Dois fatores têm sido atribuídos ao fato de o exercício resistido produzir maior EPOC. O primeiro fator refere-se às respostas hormonais que podem alterar o metabolismo, especificamente catecolaminas, cortisol e GH(33-34). O segundo refere-se ao dano tecidual acompanhado do estímulo para a hipertrofia tecidual(34), pois a síntese de proteína é diminuída durante o exercício em si, mas após o exercício existe um fenômeno compensatório, em que o turnover de proteína parece ser estimulado. Além disso, o processo de síntese de proteína exige alta demanda energética (6 ATP por mol de peptídio formado). Esse mecanismo pode também contribuir para uma longa estimulação do gasto energético após o exercício(35).

Um estudo(36) acompanhou sete homens saudáveis em dois circuitos de treinamento de peso, um usando 20'' de intervalo e outro usando 60'' a 75% de 20 RM. Os resultados demonstraram que o EPOC foi significativamente maior no protocolo de 20'', se comparado com o de 60''. O gasto energético em 1h de recuperação foi de 51 ± 2,84kcal x 37 ± 1,97kcal, respectivamente; essa diferença também foi significativa. Porém, o gasto de energia total (exercício + 1h de recuperação) foi significativamente maior no protocolo de 60'' de intervalo (277,23kcal) comparado com o protocolo de 20'' de intervalo (242,21kcal). O protocolo de 20'' resultou em maior componente rápido do EPOC, o que era esperado, uma vez que este é proporcional à intensidade do exercício(37).

Uma combinação ótima parece existir entre intensidade e duração no exercício resistido, para maximizar o EPOC(15). Contudo, essa combinação ótima ainda permanece obscura. Nesse estudo(15), foi encontrado um EPOC para além de 16h após 38' de um exercício resistido. Além disso, também se verificou que o

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
O2 aumentou constantemente durante todo o dia, atribuindo a isso a provável acumulação dos efeitos provocados pelas atividades do dia, emoções e ritmo circadiano. Apesar de esses autores terem mencionado as questões do ritmo circadiano e emocionais (que podem alterar a atividade simpática), isso não foi controlado no estudo em questão.

O efeito do exercício resistido sobre o EPOC foi verificado em homens de 22 a 40 anos previamente treinados com exercício resistido, em que foi observado que, após uma sessão de 90 minutos, a taxa metabólica permaneceu elevada por mais que duas horas após o exercício(38). Outro estudo(39) investigou o efeito de 45' de exercício resistido em mulheres treinadas sobre o EPOC. Após 120 minutos de recuperação, observou-se elevação de 18,6% no metabolismo de repouso, se comparado com o controle.

Em contraposição aos trabalhos mencionados anteriormente, um estudo(8) analisou seis homens adultos por 42 minutos durante exercício de levantamento do peso (12RM), observando-os nos 60 minutos iniciais da recuperação. A taxa metabólica estava significativamente elevada ao final dos 60 minutos, porém, apenas 19kcal adicionais foram despendidas. Os autores ressaltaram que esse gasto energético de recuperação teria pouco efeito na regulação do peso. No entanto, o fato de o consumo de oxigênio ter permanecido elevado após o controle de uma hora impossibilitou que esses autores determinassem a verdadeira duração do EPOC e o verdadeiro gasto energético durante esse período. Visto isso, o consumo de oxigênio poderia ter retornado aos valores de repouso imediatamente após esse período, como pode ter permanecido elevado por horas.

EPOC e treinamento

Existem muitos mecanismos potentes pelos quais o exercício regular poderia facilitar a manutenção ou redução do peso corporal, o que inclui: o aumento do gasto energético diário total, redução do apetite, aumento da TMR, aumento da massa livre de gordura, aumento do efeito térmico da refeição, aumento do consumo excessivo de oxigênio após o exercício e aumento da taxa de mobilização e oxidação de gordura(40). Um diagrama esquemático desse mecanismo está descrito na figura 1.

Um grupo de 15 mulheres foi submetido a um treinamento de peso e aeróbio, no qual verificou-se um GE (gasto energético) maior durante o EPOC no treinamento resistido se comparado com o aeróbio quando as sessões foram equivalentes em

Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
O2 e duração (95kcal e 64kcal, respectivamente, em 30' de recuperação)(32). Entretanto, esses autores ressaltam que muitos fatores contribuem para a recuperação do exercício resistido que, por outro lado, não ocorrem após o exercício aeróbio. Estudos indicam que alterações hormonais, particularmente das catecolaminas, cortisol e GH, podem ser substanciais, especialmente se as repetições por série forem altas (> 5) e o intervalo entre a série for menor que um minuto(29,34). Além disso, a maior oxidação de lipídios pode ser um importante fator decorrente da adaptação ao treinamento. Indivíduos treinados utilizam mais gordura no período de recuperação que os não treinados(41).

EPOC e obesidade

Vários são os estudos que mencionaram o efeito do EPOC auxiliando no emagrecimento (tabela 1). Contudo, embora as palavras emagrecimento e obesidade tenham aparecido com freqüência na literatura, poucos estudos analisaram realmente essa população. Poehlman et al.(42) analisaram o efeito do treinamento aeróbio e resistido em mulheres obesas; entretanto, não observaram o consumo de oxigênio após o exercício. Esse fato deixa evidente a importância de novos estudos que analisem o EPOC nessa população específica.

Esses autores(42) ainda mencionam outro aspecto relevante ao contexto dos obesos: a TMR foi mensurada 10 dias após os seis meses de treinamento e não houve mudanças crônicas significativas em nenhum dos grupos.

TMR: efeitos agudo e crônico do exercício

A TMR é o maior componente do gasto energético diário(31,43), sendo modificada por diversos fatores como: hora do dia, temperatura, ingestão de alimentos, ingestão de cafeína, tipo de exercício e estresse(12). A TMR diminui com a idade e redução da massa corporal; isso deve-se, em parte, à diminuição na massa magra e da atividade do sistema nervoso simpático(31).

Com relação aos efeitos agudos do exercício, Osterberg e Melby(44) verificaram que o exercício resistido aumenta a TMR por 16 horas após o exercício em aproximadamente 4,2%, sugerindo aumento de aproximadamente 50kcal/dia na TMR com o exercício físico(33). Outro estudo(38) verificou que a TMR na manhã seguinte após um exercício resistido foi 4,7% maior que o mensurado na manhã antes do exercício.

Para analisar o efeito crônico do exercício, mulheres obesas na pós-menopausa foram acompanhadas por 16 semanas de treinamento resistido. Os resultados demonstraram aumento significativo (aproximadamente 4%) da TMR e da massa muscular em ambos os grupos de obesas e não-obesas(31). Além disso, as pessoas obesas obtiveram redução significativa da massa corporal, massa gorda e percentual de gordura, indicando que o exercício resistido pode ser um importante componente integrado a programas de emagrecimento em mulheres pós-menopausa. Esse estudo acrescenta um aspecto importante na literatura ao demonstrar que o treinamento resistido acompanhado de redução na massa corporal não resultou em redução da TMR. Corroborando esse resultado, foi encontrado aumento de 7,7% da TMR em homens idosos com um protocolo similar(45).

Entretanto, alguns autores(40) analisaram os efeitos de 12 semanas (3 x por semana) de exercício aeróbio e resistido no peso corporal, composição corporal e TMR em 18 idosos (aproximadamente 61 anos) que tiveram redução da massa corporal de 9 ± 1kg em 11 semanas. Os resultados indicaram que nenhum dos dois tipos de exercício conseguiu reverter a diminuição da TMR de aproximadamente 15% (260kcal/dia) ou a oxidação de gordura como conseqüência da redução da massa corporal anterior. Da mesma forma, dois grupos de mulheres não-obesas foram treinadas, um grupo com exercício resistido e outro com exercício aeróbio por seis meses. O gasto energético diário foi mensurado 10 dias após os seis meses. Concluiu-se que os benefícios do treinamento físico no aumento do gasto energético é primariamente decorrente do efeito do exercício e não de elevação crônica do gasto energético diário em mulheres não-obesas(42).

Contudo, deve-se ressaltar que os dados sobre os efeitos do treinamento em longo prazo sobre a TMR são contraditórios. Isso pode ser devido ao fato de ser difícil quantificar o tempo exato da recuperação de um treinamento prévio, quando se pretende mensurar apenas o efeito crônico do treinamento, excluindo o efeito agudo da última sessão (para não superestimar a TMR).

Fatores genéticos e fisiológicos que influenciam a TMR também passaram a ser investigados, como, por exemplo, os níveis circulantes dos hormônios tireoidianos(46), turnover das uncoupling proteins 2 e 3(47) e níveis circulantes de leptina(48). Esses aspectos do metabolismo de repouso indicam que a atividade física pode ter dois efeitos distintos na TMR. Além do efeito do treinamento no aumento da massa magra, um segundo efeito pode resultar desses processos fisiológicos que influenciam a TMR(43).

A proteína desacopladora (UCP3) foi descoberta em 1997(49). Essas proteínas transportam alguns prótons ou ânions de ácidos graxos através da membrana interna da mitocôndria, de modo a produzir ATP e elevar o gasto energético. Entretanto, também existe a evidência de que a função fisiológica primária da UCP3 não é a regulação do gasto energético, porém, esta ainda permanece obscura. Tem sido sugerido(50) que a UCP3 pode estar envolvida com as adaptações induzidas pelo treinamento no metabolismo energético, exercendo uma down-regulation na UCP3, que, por sua vez, está associada ao aumento do mecanismo de eficiência no aproveitamento de energia. Deve-se ressaltar, no entanto, que no exercício agudo ocorre up regulation da UCP3(51), possibilitando maior oxidação de ácidos graxos. Entretanto, com o treinamento a capacidade de oxidar ácidos graxos poderia aumentar, reduzindo a necessidade de altos níveis de UCP3.

TMB nos obesos e leptina

A leptina, um hormônio produzido pelo tecido adiposo, é o maior regulador da ingestão de alimentos e da taxa metabólica(48). De acordo com esses mesmos autores, o nível plasmático de leptina reflete-se nos estoques energéticos, uma vez que esse hormônio exerce um feedback negativo no eixo hipotálamo-pituitária-tireóide e eixo hipotálamo-pituitária-adrenal.

O mecanismo de ação da leptina envolve diminuição da ingestão de alimento e o aumento do gasto energético, resultando em redução da massa corporal. A leptina também aumenta a atividade simpática, sugerindo aumento da termogênese no tecido adiposo marrom (regula o peso corporal após hiperfagia), o que poderia ser um mecanismo no qual a leptina regularia a massa corporal(52). Os resultados desse estudo mostraram diminuição de 43% na ingestão de alimento com a administração de leptina. Além disso, também foi verificado aumento significativo no consumo de oxigênio, o que foi associado com o aumento na síntese de novas proteínas UCP (uncoupling protein). A concentração total de UCP aumentou 131% com a administração de leptina, promovendo a redução da massa corporal. A ativação da UCP aumenta a taxa de oxidação de substrato e produção de calor. Esses autores concluíram que a leptina aumenta o turnover de norepinefrina no tecido adiposo, uma vez que a leptina eleva a ativação simpática, aumentando a termogênese no tecido adiposo marrom e a expressão da UCP.

Neste sentido, torna-se importante mencionar que um estudo recente de nosso grupo de estudos(53) demonstrou que a maioria das adolescentes obesas, ingressantes em nosso programa multidisciplinar para o tratamento da obesidade, apresentou hiperleptinemia exacerbada. Isso poderia sugerir resistência à ação desse hormônio decorrente de alterações nos seus receptores, o que resultaria em menor termogênese e redução da TMR desses pacientes. Além disso, essas alterações sugerem ainda a necessidade de estratégias em longo prazo para o restabelecimento da ação da leptina, podendo este ser um fator contribuinte para os resultados discrepantes relativos à TMR de obesos e não obesos.

Por outro lado, no mesmo estudo anteriormente mencionado, verificamos que, após um período de intervenção de curto prazo, a hiperleptinemia foi reduzida significativamente. No entanto, não restabelecida a valores de normalidade, confirmando a necessidade de tratamento em longo prazo para os ajustes hormonais e metabólicos que favorecem o aumento da TMR e, conseqüentemente, maior facilidade para a obtenção do balanço energético negativo e redução da massa adiposa.

CONSIDERAÇÕES FINAIS

Não se sabe, portanto, qual a combinação exata, mas o desenvolvimento de programas de treinamento que maximizem o EPOC pode ser um importante fator para a redução ponderal(9,54). Embora o custo energético do EPOC em uma sessão de treinamento se mostre pequeno, seu efeito cumulativo poderá ter um impacto positivo no quadro da obesidade. O mesmo raciocínio é válido para a TMR. Entretanto, torna-se interessante ressaltar que a perda de peso e EPOC não tem sido comprovada. Há necessidade de mais e mais estudos para que esse tema seja mais bem compreendido.

  • Endereço para correspondência:

    Rua Igaraúnas, 70, Floramar

    31840-330 – Belo Horizonte, MG

  • Recebido em 27/12/05. Versão final recebida em 30/7/06. Aceito em 24/8/06.

    Todos os autores declararam não haver qualquer potencial conflito de interesses referente a este artigo.

    • 1. Levine J, Melanson EL, Weslertep KR, Hill JO. Measurement of the components of nonexercise activity thermogenesis. Am J Physiol. 2001;281:670-5.

    • 2. Hill JA, Melby C, Johnson SL, Peters IC. Physical activity and energy requirements. Am J Clin Nutr. 1995;62(s):1059-66.

    • 3. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc. 1984;16(1):29-43.

    • 4. Bahr R, Sejersted OM. Effect of feeding and fasting on excess postexercise oxygen consumption. J Appl Physiol. 1991;71(6):2088-93.

    • 5. Thorton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc. 2002;34(4):715-22.

    • 6. Trost S, Wilcox A, Gillis D. The effect of substrate utilization, manipulated by nicotinic acid, on excess postexercise oxygen consumption. Int J Sports Med. 1997;18(2):83-8.

    • 7. Borsheim E, Bahr R, Hansson P, Gullestad L, Hallén J, Sejersted OM. Effect of beta-adrenoceptor blockade on post-exercise oxygen consumption. Metabolism. 1994;43(5):565-71.

    • 8. Melby CL, Tincknell T, Schmidt WD. Energy expenditure following a bout of non-steady state resistance exercise. J Sports Med Phys Fitness. 1992;32(2):128-35.

    • 9. Quinn TJ, Vroman NB, Kertzer R. Postexercise oxygen consumption in trained females: effect of exercise duration. Med Sci Sports Exerc. 1994;26(7):908-13.

    • 10. Bahr R, Ingnes I, Vaage O, Sejersted OM, Newsholme EA. Effect of duration on excess. J Appl Physiol. 1987;62(2):485-90.

    • 11. Dolezal BA, Potteiger JA, Jacobsen DJ, Benedict SF. Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Med Sci Sports Exerc. 1999;35(s):311.

    • 12. Gore CJ, Withers RT. Effect of exercise intensity and duration on postexercise metabolism. J Appl Physiol. 1990;68(6):2362-8.

    • 13. Laforgia J, Withers RT, Shipp NJ, Gore CJ. Comparison of energy expenditure elevations after submaximal and supramaximal running. J Appl Physiol. 1997; 82(2):661-6.

    • 14. Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83:153-9.

    • 15. Schuenke MD, Mikat RP, McBride JM. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. Eur J Appl Physiol. 2002;86(5):411-7.

    • 16. Murphy E, Schwarzkopf R. Effects of standard set and circuit weight training on excess post-exercise oxygen consumption. J Appl Sport Sci. 1992;6:88-91.

    • 17. Short KR, Wiest JM, Sedlock DA. The effect of upper body exercise intensity and duration on post-exercise oxygen consumption. Int J Sports Med. 1996; 17(8):559-63.

    • 18. Williams IT, Pricher MP, Halliwill JR. Is postexercise hypotension related to excess postexercise oxygen consumption through changes in leg blood flow? J Appl Physiol. 2005;98:1463-8.

    • 19. Hunter GR, Weinsier RL, Bamman, MM, Larson DE. A role for high intensity exercise on energy balance and weight control. Int J Obes. 1998;22:489-93.

    • 20. Brockman L, Berg K, Latin R. Oxygen uptake during recovery from intense intermittent running and prolonged walking. J Sports Med Phys Fitness. 1993;33: 330-6.

    • 21. Meirelles CM, Gomes PSC. Efeitos da atividade contra-resistência sobre o gasto energético: revisitando o impacto das principais variáveis. Rev Bras Med Esporte. 2004;10(2):122-30.

    • 22

      World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 1998.

    • 23. Foreyt J, Goodrick K. The ultimate triumph of obesity. Lancet. 1995;346:134-5.

    • 24. Dâmaso A. Obesidade. São Paulo: Medsi, 2003.

    • 25. Imamura H, Shibuya S, Uchida K, Teshima K, Masuda R, Miyamoto N. Effect of moderate exercise on excess post-exercise oxygen consumption and catecholamines in young women. J Sports Med Phys Fitness. 2004;44:23-9.

    • 26. Borsheim E, Knardahl S, Hostmark AT, Bahr R. Adrenergic control of post-exercise metabolism: recovery processes after exercise. Act Physiol Scand. 1998; 162(3):313-23.

    • 27. Sedlock DA, Schneider A, Gass E, Gass G. Excess post-exercise oxygen consumption in spinal cord-injured men. Eur J Appl Physiol. 2004;93:231-6.

    • 28. French SA, Jeffery RW, Forster JL, Mcgovern PG, Kelder SH, Baxter JE. Predictors of weight change over two years among a population of working adults: the healthy worker project. Int J Obes. 1998;18:145-54.

    • 29. Kaminsky LA, Padjen S, LaHam-Seger J. Effect of split exercise sessions on excess post-exercise oxygen consumption. Br J Sports Med. 1990;24(2):95-8.

    • 30. Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33(14):1037-60.

    • 31. Ryan AS, Pratley RE, Elahi D, Goldberg AP. Resistive training increases fat-free mass and maintains RMR despite weight loss in postmenopausal women. J Appl Physiol. 1995;79(3):818-23.

    • 32. Burleson MA, Bryant HS, Stone MH, Collins MA, McBride TT. Effect of weight training exercise and treadmill exercise on post-exercise oxygen consumption. Med Sci Sports Exerc. 1998;30(4):518-22.

    • 33. Kraemer WJ, Marchitelli L, Mccurry D, Gordon SE, Harman E, Dziados IE, et al. Hormonal and growth factor responses to heavy resistance exercise. J Appl Physiol. 1990;69:1442-50.

    • 34. Kraemer WJ, Fry AC, Warren BJ, Stone MH, Fleck SJ, Kearney IT, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med. 1992;13:103-9.

    • 35. Bielinski R, Schutz Y, Jequier E. Energy metabolism during the postexercise recovery in man. Am J Clin Nutr. 1985;42(1):69-82.

    • 36. Haltom RW, Kraemer RR, Sloan RA, Hebert EP, Frank K, Tryniecki JL. Circuit weight training and its effects on excess postexercise oxygen consumption. Med Sci Sports Exerc. 1999;31(11):1613-8.

    • 37. Dawson B, Straton S, Randall N. Oxygen consumption during recovery from prolonged submaximal cycling below the anaerobic threshold. J Sports Med Phys Fitness. 1996;36:77-84.

    • 38. Melby C, Scholl C, Edwards G, et al. Effect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J Appl Physiol. 1993; 75(4):1847-53.

    • 39. Binzen CA, Swann PD, Manore MM. Postexercise oxygen consumption and substrate use after resistance exercise in women. Med Sci Sports Exerc. 2001; 33(6):932-8.

    • 40. Ballor DJ, Harvey-Berino JR, Ades PA, Cryan J, Calles-Escandon J. Contrasting effects of resistance and aerobic training on body composition and metabolism after diet-induced weight loss. Metabolism. 1996;45(2):179-83.

    • 41. Kaminsky LA, Knowlton RG, Perkins RM, Hetzler RK. Relationships of aerobic capacity and percent fat with plasma free fatty acid following walking. Am J Clin Nutr. 1986;44:603-9.

    • 42. Poehlman ET, Denino WF, Beckett T, Kinaman KA, Dionne IJ, Dvorak R, et al. Effects of endurance and resistance training on total daily energy expenditure in young women: a controlled randomized trial. J Clin Endocrinol Metab. 2002;87(3): 1004-9.

    • 43. Speakman JR, Selamn C. Physical activity and resting metabolic rate. Proc Nutr Soc. 2003;62:621-34.

    • 44. Osterberg KL, Melby CL. Effect of acute resistance exercise on post-exercise oxygen consumption and RMR in young women. Int J Sport Nutr Exerc Metab. 2000;10:71-81.

    • 45. Pratley R, Nicklas B, Rubin M, Miller J, Smith M, Smith A, et al. Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65 years-old men. J Appl Physiol. 1994;76:133-7.

    • 46. Freake HC, Oppenheimer JH. Thermogenesis and thyroid function. Annu Rev Nutr. 1995;15:263-91.

    • 47. Barbe P, Millet L, Larrouy D, Galitzky J, Berlan M, Louvet J, Langin D. Uncoupling protein-2 messenger ribonucleic acid expression during very-low-calorie diet in obese pre-menopausal women. J Clin Endrocrinol Metab. 1998;83:2450-3.

    • 48. Riccioni G, Menna V, Lambo MS, Della Vecchia R, Di llio C, et al. Leptin and hypothalamus-hypophysis-thyroid axis. Clin Ter. 2004;155(1):29-31.

    • 49. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydox J, et al. Uncoupling protein-3: e new member of the mitochondrial carrier family with tissue-specific expression. FEBS Letters. 1997;408:39-42.

    • 50. Lanouette CM, Giacobino JP, Perusse L, Lacaille M, Yvon C, Chagnon M, et al. Association between uncoupling protein 3 gene and obesity-related phenotypes in the Quebec Family Study. Mol Med. 2001;7(7):433-41.

    • 51. Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch P. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia and AMP-activated protein kinase. Am J Physiol. 2000;279:E622-9.

    • 52. Scarpage PJ, Matheny M, Pollock BH, Tumer N. Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol. 1997;273(1 Pt 1):E226-30.

    • 53. Damaso AR, Tock l, Tufik S, Prado WL, Stella SG, Fisberg M, et al. Tratamento multidisciplinar reduz o tecido adiposo visceral, leptina, grelina e a prevalência de esteatose hepática não alcoólica (NAFLD) em adolescentes obesos. Rev Bras Med Esporte. 2006;12(5):263-7.

    • 54. Fukuba Y, Yano Y, Murakami H, Kan A, Miura A. The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women. Clin Physiol. 2000;20(2):165-9.

    • 55. Maehlum S, Grandmontagne M, Newsholme EA, Sejersted OM. Magnitude and duration of excess postexercise oxygen consumption in healthy young subjects. Metabolism. 1986;35(5):425-9.

    • 56. Sedlock DA, Fissinger JA, Melby CL. Effect of exercise intensity and duration on postexercise energy expenditure. Med Sci Sports Exerc. 1989;21(6):662-6.

    Endereço para correspondência: Giselle Foureaux Rua Igaraúnas, 70, Floramar 31840-330 – Belo Horizonte, MG E-mail: /

    • Publicação nesta coleção
      01 Abr 2008
    • Data do Fascículo
      Dez 2006

    • Aceito
      24 Ago 2006
    • Revisado
      30 Jul 2006
    • Recebido
      27 Dez 2005


    Page 2

    A crescente prevalência de obesidade e sobrepeso ressalta a necessidade de intervenções para reverter esse quadro. Nesse contexto, a atividade física pode contribuir com um efeito duplo, por meio de mudanças fisiológicas agudas e crônicas: na primeira condição encontra-se o gasto energético do exercício e recuperação (EPOC - consumo excessivo de oxigênio após o exercício), e na segunda encontra-se a taxa metabólica de repouso (TMR). Dessa forma, o objetivo deste trabalho de revisão foi investigar o efeito do EPOC e da TMR como coadjuvantes nos programas de emagrecimento, buscando discutir os divergentes resultados encontrados na literatura, no que diz respeito à magnitude e duração do EPOC, bem como discutir o efeito do exercício na TMR. Os estudos demonstram, de forma geral, que o exercício de maior intensidade é capaz de promover maior EPOC, se comparado com um exercício de intensidade menor e, quando comparam o exercício resistido com o aeróbio, verifica-se maior EPOC no primeiro. Em relação às alterações da TMR, os resultados agudos mostram aumento significativo, porém os resultados em longo prazo são mais discrepantes, devido à dificuldade de mensurar essa variável, sem superestimá-la. Concluindo, a literatura aponta que a periodização de um treinamento que possa maximizar tanto o EPOC quanto a TMR podem ser importantes fatores para o emagrecimento e, embora, o custo energético dessas variáveis em uma sessão de exercício se mostre pequeno, em longo prazo poderá ser bastante significativo. No entanto, novos estudos deverão ser realizados com o intuito de confirmar essas evidências.

    Obesidade; Emagrecimento; EPOC; TMR

    La creciente prevalencia de la obesidad y el sobrepeso resalta la necesidad de intervenciones para reverter ese cuadro. En ese contexto, la actividad física puede contribuir con un doble efecto, por medio de cambios fisiológicos agudos y crónicos: en la primera condición se encuentra desgaste energético del ejercicio y recuperación (EPOC - consumo excesivo de oxígeno después del ejercicio), y en la segunda se encuentra la tasa metabólica de reposo (TMR). De esta forma, el objetivo de este trabajo de revisión ha sido el de investigar el efecto de EPOC y de TMR como coadyuvantes en los programas de adelgazamiento, buscando discutir los divergentes resultados encontrados en la literatura, en lo que se refiere a la magnitud y duración de EPOC, así como discutir el efecto del ejercicio en TMR. Los estudios demostraron, de una forma general, que el ejercicio de mayor intensidad es capaz de promover un mayor EPOC, al ser comparado con un ejercicio de intensidad menor y, cuando compararon el ejercicio de resistencia con el aeróbico, se verifica un mayor EPOC en el primero. En relación a las alteraciones de TMR, los resultados agudos muestran un aumento significativo, pero los resultados a largo plazo son más discrepantes, debido a la dificultad de medir esa variable, sin superestimarla. En conclusión, la literatura apunta que la periodicidad de un entrenamiento que pueda maximizar tanto EPOC como TMR, que pueden ser importantes factores para adelgazamiento, a pesar del costo energético de esas variables en una sesión de ejercicio se muestre pequeño, a largo plazo podrá ser bastante significativo. Sin embargo, nuevos estudios deberán ser realizados con el intuito de confirmar estas evidencias.

    Obesidad; Adelgazamiento; EPOC; TMR

    The constant growth of obesity and overweight only goes to show the need of intervention to reverse those figures. In this context, physical activity can contribute with a double effect, through acute and chronic physiological changes: in the first condition one can find the energetic cost from exercising and recovery (EPOC - excess post-exercise oxygen consumption), and in the second, the resting metabolic rate (RMR). Thus, this revision's goal was to investigate the effect of EPOC and RMR as supporting factors in weight-control programs, willing to discuss the different results found in literature, concerning both magnitude and length of EPOC, as well as discussing the effects of exercising in RMR. Research shows, in general terms, that the most intense exercises are able to promote a bigger EPOC when compared to exercises of lower intensity, while a bigger EPOC was found in resistive exercises when compared to aerobic ones. Concerning RMR changes, the acute results show significant increase at it; however, long-term results are more discrepant, due to the difficulty in measuring this variable without overestimating it. In summary, literature points that periodicity of a training that can maximize both EPOC and RMR may be an important factor to weight-losing and, although energetic cost of these variables in a therapy session seem rather small, it can be significant in a long-term relation. However, new studies are important to confirm these evidences.

    Obesity; Weight loss; EPOC; RMR

    REVIEW ARTICLE

    Effects of excess post-exercise oxygen consumption and resting metabolic rate in energetic cost

    Efecto del consumo excesivo de oxígeno después del ejercicio y de la tasa metabólica de reposo en el desgaste energético

    Giselle FoureauxI, II; Kelerson Mauro de Castro PintoI; Ana DâmasoII

    ICentro Universitário de Belo Horizonte, BH, MG

    IIUniversidade Federal de São Paulo – Escola Paulista de Medicina – UNIFESP-EPM

    Correspondence to

    ABSTRACT

    The constant growth of obesity and overweight only goes to show the need of intervention to reverse those figures. In this context, physical activity can contribute with a double effect, through acute and chronic physiological changes: in the first condition one can find the energetic cost from exercising and recovery (EPOC – excess post-exercise oxygen consumption), and in the second, the resting metabolic rate (RMR). Thus, this revision's goal was to investigate the effect of EPOC and RMR as supporting factors in weight-control programs, willing to discuss the different results found in literature, concerning both magnitude and length of EPOC, as well as discussing the effects of exercising in RMR. Research shows, in general terms, that the most intense exercises are able to promote a bigger EPOC when compared to exercises of lower intensity, while a bigger EPOC was found in resistive exercises when compared to aerobic ones. Concerning RMR changes, the acute results show significant increase at it; however, long-term results are more discrepant, due to the difficulty in measuring this variable without overestimating it. In summary, literature points that periodicity of a training that can maximize both EPOC and RMR may be an important factor to weight-losing and, although energetic cost of these variables in a therapy session seem rather small, it can be significant in a long-term relation. However, new studies are important to confirm these evidences.

    Keywords: Obesity. Weight loss. EPOC. RMR.

    RESUMEN

    La creciente prevalencia de la obesidad y el sobrepeso resalta la necesidad de intervenciones para reverter ese cuadro. En ese contexto, la actividad física puede contribuir con un doble efecto, por medio de cambios fisiológicos agudos y crónicos: en la primera condición se encuentra desgaste energético del ejercicio y recuperación (EPOC – consumo excesivo de oxígeno después del ejercicio), y en la segunda se encuentra la tasa metabólica de reposo (TMR). De esta forma, el objetivo de este trabajo de revisión ha sido el de investigar el efecto de EPOC y de TMR como coadyuvantes en los programas de adelgazamiento, buscando discutir los divergentes resultados encontrados en la literatura, en lo que se refiere a la magnitud y duración de EPOC, así como discutir el efecto del ejercicio en TMR. Los estudios demostraron, de una forma general, que el ejercicio de mayor intensidad es capaz de promover un mayor EPOC, al ser comparado con un ejercicio de intensidad menor y, cuando compararon el ejercicio de resistencia con el aeróbico, se verifica un mayor EPOC en el primero. En relación a las alteraciones de TMR, los resultados agudos muestran un aumento significativo, pero los resultados a largo plazo son más discrepantes, debido a la dificultad de medir esa variable, sin superestimarla. En conclusión, la literatura apunta que la periodicidad de un entrenamiento que pueda maximizar tanto EPOC como TMR, que pueden ser importantes factores para adelgazamiento, a pesar del costo energético de esas variables en una sesión de ejercicio se muestre pequeño, a largo plazo podrá ser bastante significativo. Sin embargo, nuevos estudios deberán ser realizados con el intuito de confirmar estas evidencias.

    Palabras-clave: Obesidad. Adelgazamiento. EPOC. TMR.

    INTRODUCTION

    Daily energetic cost can be divided in three components: RMR (resting metabolic rate); food thermal effect and energetic cost associated with the physical activity(1). Physical activities promote an increase of the total energetic cost both in an acute and chronic manner. The first condition refers to the energetic cost itself during the exercise performance and during the recovery phase; while the second refers to the alteration of the resting metabolic rate RMR(2).

    Concerning the acute effect, it is well established that the post-exercise O2 consumption immediately returns to the resting indices. Such energetic demand during the post-exercise recovery period is known as "Excess Post-exercise Oxygen Consumption" – EPOC(3).

    The excess post-exercise oxygen consumption consists of a fast component and an extended component. The EPOC fast component occurs within 1 h(4). Although the precise cause of these responses is not well clarified yet, it is probable that these factors contribute for: the ATP/CP resynthesis; ions behavioral redistribution (increase in the activity of the sodium and potassium bomb); lactate removal; tissue damage restoration; as well as recovery of the increase of the HR and the body temperature increase(4-8). During the extended component, processes for the physiological homeostasis return continuously occur; however, in a much lower level. These processes may include the Krebs cycle with a larger utilization of free fatty acids(4,6); effects of several hormones such as cortisol, insulin, ACTH, thyroid hormones and GH(5); hemoglobin and myoglobin resynthesis(7); increase of the sympathic activity(7); increase of the mitochondrial breath by the increase of the norepinephrine concentration(9); glycogen resynthesis and temperature increase(10).

    Moreover, results of several studies concerning the EPOC magnitude and duration have been discrepant. While several studies show that the EPOC may last for hours(4-5,7,10-15), other have concluded that the EPOC is transitive and minimal(14,16-18).

    Several studies have analyzed the EPOC contribution in weight loss programs, once it is a result of a negative daily energetic balance between consumption and energetic cost(19). Bahr et al.(10) had considered the EPOC as an important factor in weight control, once exercising requires extra energy besides the one expected in physical activity. Other studies corroborate that the increased metabolism magnitude during recovery has an important implication in the prescription of ponderal reduction programs(9,12-13,19-20).

    Ponderal reduction is also related with chronic alterations of physical activities, that is, of the resting metabolic rate (RMR). The RMR is defined as the energetic cost necessary to the physiological processes maintenance in the post-absorptive state, reaching up to 60-70% of the total energetic cost, depending on the physical activity level(21).

    The high interest on ponderal reduction is due to the fact that obesity is currently considered by the World Health Organization a public health problem(22). An estimate considering the current prevalence of obese individuals highlights that if such proportion remains, in the year 2230 100% of the North-American population will be obese(23). Analyzing the Brazilian reality, Meirelles and Gomes(21) showed that in Rio de Janeiro 44% of the men and 33% of the women in the age group from 26 to 45 years present overweight or obesity.

    Although obesity is related to several causes, namely genetic; physiological; metabolic; environmental; emotional and cultural ones, all the attention dedicated to the increase of the daily energetic cost is highly valid, once the energetic balance is partly determined by the energy consumption and partly by the energy cost(21,24). Therefore, a positive energetic imbalance may lead to excessive energy accumulation stored as body fat.

    Thereby, the aim of the present study was to investigate the EPOC and RMR effect in the energetic cost, trying to discuss the contrasting results found in the literature concerning the EPOC magnitude and duration, as well as to discuss the exercise effect in the RMR.

    DEVELOPMENT

    EPOC effect in the increase of the total daily energetic cost with aerobic exercise

    The disparities in the results related with the EPOC may reflect differences in many factors, such as: the muscular mass involved in the exercise; intensity and duration; training status; food ingestion (meal's thermal effect); sleep quality of the previous night; environmental conditions; the subject's familiarity with the protocol; temperature and catecholamines concentrations variations; metabolic cost of the lactate removal; substrate utilization and menstrual cycle phase for women(25), pre-exercise anxiety; circadian rhythm; the fact that the majority of the studies did not analyze the same individuals(20) and overtraining presence for athletes.

    The EPOC increases linearly with the exercise duration(10). However, the exercise intensity seems to affect both the magnitude and the duration of the EPOC, while the exercise duration affects only its duration(12).

    Therefore, the studies have suggested that exercises with higher intensity produce a more extended increase in the EPOC than exercises of shorter intensities (when they have equivalent volume), since shorter intensities exercises cause greater metabolic stress, being necessary a larger energy cost in order to return to the homeostasis condition(5,13-14). Moreover, a higher level of activity of the sympathic nervous system (stimulated by the catecholamines) can also contribute to the increase of the post-exercise metabolic rate, since the epinephrine and the norepinephrine stimulate the mitochondrial breath and the cellular function, facilitating the sodium and potassium passage through the cellular membrane, increasing the ATP production and the oxygen cost(7,9,26).

    An increase of 20 to 35% in the lipolytic responsiveness in the adipocyte after the exercise is found(4,6). However, the oxidation rate of lipids is even higher after high intensity exercise, once the glycogen synthesis is increased after exercise in order to replace the glycogen used during exercise. The lipids oxidation is also associated with the increase of the turnover of the free fatty acids concomitantly; the turnover increase of protein can also contribute to a higher EPOC(19). Besides these factors, the higher intensity exercise is associated with a greater synthesis of hemoglobin and myoglobin(27), as well as to seem to be inversely associated with the obesity rates(28).

    Some works have analyzed the EPOC and the energetic cost comparing continuous exercise and submaximal intervaled protocols(20,29) and submaximal continuous and supramaximal intervaled exercises(13). All these studies demonstrated a greater energetic cost for the more intense exercises. Starting from the premise that it is possible to perform more minutes at high intensity with intermittent exercise if compared with continuous exercise(13), overweighed individuals can exercise for a shorter time at an intensity that produces a higher EPOC. Such fact occurs once in the majority of the times these individuals are not conditioned besides not being fond of physical activities.

    Nonetheless, it is worth mentioning that the EPOC is relatively short after exercises of moderate intensity and duration, < 70% of

    Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
    O2 max. and/or < 60 minutes(12,25,30), since the EPOC magnitude after aerobic exercise depends on both factors (exercise intensity and duration). Conversely, exercises with duration > 60 minutes and/or with an intensity > than 70% of
    Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
    O2 max. seem to be related to an extended EPOC(4,7,10,12-13). It has been also proposed that in individuals who want to lose weight, the EPOC magnitude (energetic cost) is more important than duration(25).

    EPOC effect in the total daily increase of the energetic cost with resistive exercise

    The studies that compared the resistive exercise with the aerobic one(31-32) emphasized that the resistive exercise would probably cause a greater disturbance in the homeostasis than the aerobic one, suggesting that, due to high intensities involved, it could require a greater energetic cost both during exercise and recovery. Moreover, analyzing only the resistive exercise, it is also suggested that a more extenuate protocol is more efficient in the weight control(15).

    Two factors have been attributed to the fact that the resistive exercise produces higher EPOC. The first factor refers to hormone responses that may alter metabolism, specifically catecholamines, cortisol and GH(33-34). The second refers to the tissue damage followed by the stimulus for the tissue hypertrophy(34), since the protein synthesis is decreased during the exercise itself. However, after exercise there is a compensatory phenomenon, in which the protein turnover seems to be stimulated. Besides that, the protein synthesis process requires high energetic demand (6 ATP per mol of made peptide). Such mechanism can also contribute to a long stimulation of the energetic cost after exercise(35).

    A study(36) followed 7 healthy men in two weight training circuits; one using 20'' of interval and the other using 60'' at 75% of 20 RM. The results demonstrated that the EPOC was significantly higher in the 20'' protocol, if compared with the 60'' one. The energetic cost in 1 h recovery was of 51 ± 2,84 Kcal x 37 ± 1,97 Kcal respectively. Such difference was also significant; however, the total energy cost (exercise + 1 h of recovery) was significantly higher in the 60'' interval protocol (277,23 Kcal) compared with the 20'' interval protocol (242,21 Kcal). The 20'' protocol resulted in higher fast EPOC component, which was expected once it is proportional to the exercise intensity(37).

    There seems to be an optimum combination between intensity and duration in the resistive exercise in order to maximize the EPOC(15). Nevertheless, this optimum combination still remains obscure. In this study(15), an EPOC for beyond 16 h after 38 minutes of resistive exercise was found. In addition to that, it was also verified that the

    Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
    O2 constantly increased during the entire day, probably due to the accumulation of the effects caused by the daily activities; emotions and circadian rhythm. Although these authors have mentioned the circadian rhythm and emotional issues (which can alter the sympathic activity), they were not controlled in the study.

    The effect of resistive exercise on the EPOC was verified in men of 22 to 40 years of age previously trained with resistive exercise. It was observed that after a 90-minute session, the metabolic rate remained high for more than 2 hours after the exercise(38). Another study(39) investigated the effect of 45' of resistive exercise in trained women on the EPOC. After 120 minutes of recovery, an increase of 18,6% in the resting metabolism was found if compared with the control.

    Conversely to the previously mentioned works, a study(8) analyzed 6 adult men for 42 minutes during weight lifting exercise (12 RM), and observed the recovery period for 60 minutes. The metabolic rate was significantly high at the end of the 60 minutes; however, only 19 additional Kcal were used. The authors highlighted that such recovery energy cost would have little effect in the weight regulation. Nevertheless, the fact that the oxygen consumption remained high after 1 hour control did not allow the authors to determine the real EPOC duration and the real energetic cost during this period. Within this context, the oxygen consumption could have returned to the resting values immediately after this period or remained high for hours.

    EPOC and training

    There are several powerful mechanisms through which regular exercise could facilitate the body weight maintenance or reduction, which includes: the increase of the total daily energetic cost; appetite reduction; RMR increase; increase of the fat free mass; increase of the meal thermal effect; increase of the excess post-exercise oxygen consumption and increase of the mobilization and fat oxidation rate(40). A scheme of this mechanism is described in figure 1.

    A group of 15 women was submitted to a weight and aerobic training, where it was verified if a higher energetic cost (EC) during EPOC in the resistive training occurred if compared with the aerobic one when the sessions were equivalent in

    Cite ao menos três contribuições/funções do EPOC após a realização de seus exercícios físicos
    O2 and duration (95 Kcal and 64 Kcal respectively, in 30' of recovery)(32). Nevertheless, these authors pointed that several factors contribute to the recovery from the resistive exercise which, on the other hand, do not occur after aerobic exercise. Studies show that hormonal alterations, particularly of the catecholamines, cortisol and GH, may be substantial, especially if the repetitions per series are high (> 5) and the interval between the series is shorter than 1 minute(29,34). Moreover, the higher oxidation of lipids may be an important factor derived from the adaptation to training. Trained individuals use more fat in the recovery period than the non-trained ones(41).

    EPOC and obesity

    Several studies mention the EPOC effect as a weight loss aid (table 1). Although the words weight loss and obesity have often appeared in the literature, few studies really analyzed such population. Poehlman et al.(42) analyzed the effect of aerobic and resistive training in obese women; however, they did not observe the post-exercise oxygen consumption. Such fact shows the importance of further studies which analyze the EPOC in this specific population.

    These authors(42) still mention another relevant aspect to the obese subjects' context: the RMR was measured 10 days after the six-month training, and there were not significant chronic alterations in none of the groups.

    RMR: Acute and chronic effects of the exercise

    The RMR is the major component of the daily energetic cost(31,43), being modified by several factors such as: time of the day; temperature; food ingestion; caffeine ingestion; exercise type and stress(12). The RMR decreases with age and body mass reduction. Such fact is partly due to the decrease of lean body mass and of the sympathic nervous system activity(31).

    Concerning the acute effects of exercise, Osterberg and Melby(44) verified the resistive exercise increases the RMR for 16 hours after exercise in approximately 4,2%, suggesting an increase of approximately 50 Kcal/day in the RMR with physical exercise(33). Another study(38) verified that the RMR in the following morning after a resistive exercise was 4,7% higher than the one measured in the morning prior to the exercise.

    In order to analyze the chronic effect of exercise, obese women in the post-menopause were followed for 16 weeks of resistive training. The results demonstrated significant increase (approximately 4%) of the RMR and muscular mass in both obese and non-obese groups(31). Moreover, the obese subjects obtained significant decrease of the body mass, fat mass and fat percentage, showing that the resistive exercise may be an important component integrated to weight loss programs in post-menopause women. This study adds an important aspect in the literature when demonstrates that the resistive training followed by body mass reduction did not result in RMR reduction. Corroborating this result, an increase of 7,7% of RMR was found in elder men with a similar protocol(45).

    Nevertheless, some authors(40) analyzed the effects of 12 weeks (3 x per week) of aerobic and resistive exercise in the body weight, body composition and RMR in 18 elders (approximately 61 years) who had body mass reduction of 9 ± 1 Kg in 11 weeks. The results showed that none of the two types of exercise could revert the decrease of the RMR of approximately 15% (260 Kcal/day) or the fat oxidation as consequence of the previous body mass reduction. Likewise, 2 groups of non-obese women were trained for six months; one with resistive exercise and the other with aerobic exercise. The daily energetic cost was measured 10 days after the 6 months. It was concluded that the physical training benefits in the increase of the energetic cost is primarily derived from the exercise effect and not from a chronic increase of the daily energetic cost in no-obese women(42).

    Nonetheless, it is worth mentioning that the data about the long term-training effects on the RMR are contradictory. This can probably occur due to the difficulty to quantify the exact time of recovery of a previous training, when one desires to measure only its chronic effect, excluding the acute effect of the last session (not to overestimate the RMR).

    Genetic and physiological factors that influence the RMR were also investigated, namely the circulating levels of the thyroid hormones(46); turnover of the uncoupling 2 and 3 proteins(47) and circulating levels of leptin(48). These aspects of the resting metabolism show that physical activity may have two distinct effects in the RMR. Besides the training effect in the lean mass increase, a second effect may result from these physiological processes that influence the RMR(43).

    The uncoupling protein (UCP3) was discovered in 1997(49). These proteins transport some protons or anions of fatty acids through the mitochondrial internal membrane in order to produce ATP and increase the energetic cost. Nevertheless, there is also evidence that the primary physiological function of the UCP3 is not the regulation of the energetic cost; however, this phenomenon still remains obscure. It has been suggested(50) that the UCP3 may be involved with the adaptations induced by training in the energetic metabolism, causing a down-regulation in the UCP3, which consequently is associated with the increase of the efficiency mechanism in the energy profit. It is worth mentioning though, that in the acute exercise occurs up regulation of the UCP3(51), enabling better oxidation of fatty acids. However, with training the capacity to oxidate fatty acids could increase, reducing the need of high levels of UCP3.

    BMR in obese subjects and leptin

    Leptin, a hormone produced by the adipose tissue, is the major regulator of the food ingestion and the metabolic rate(48). According to the same authors, the plasmatic level of leptin reflects in the energetic storage, once this hormone plays a negative feedback in the hypothalamus-pituitary-thyroid axis and hypothalamus-pituitary-adrenal axis.

    The leptin action mechanism involves decrease of the food ingestion and the increase of the energetic cost, resulting in reduction of the body mass. Leptin also increases the sympathic activity, suggesting an increase of the thermogenesis in the brown adipose tissue (regulates the body weight after hyperphagia), which could be a mechanism in which leptin would regulate the body mass(52). The results of this study showed decrease of 43% in the food ingestion with the administration of leptin. Moreover, it was also verified significant increase in the oxygen consumption, which was associated with the increase in the new UCP proteins (uncoupling proteins). The total concentration of UCP increased 131% with the leptin administration, promoting body mass reduction. The UCP activation increases the substrate oxidation rate and heat production. These authors concluded that leptin increases the norepinephine turnover in the adipose tissue, once it increases the sympathic activation, which increases the thermogenesis in the brown adipose tissue, increasing the UCP expression as well.

    Within this context, it is important to mention that a recent study of our study group(53), demonstrated that the majority of the obese female adolescents who registered in our Multidisciplinary Program for obesity treatment, presented exacerbated hyperleptinemia. Such fact could suggest resistance to this hormone's action derived from alterations in their receptors, which would result in lower thermogenesis and MRM reduction of these patients. Besides that, these alterations suggest the need of long term-strategies in order to reestablish the leptin action. It could also be a factor that contributes to the discrepant results concerning the RMR of obese and non-obese individuals.

    Conversely, in the same study previously metioned, it is verified that after a short term intervention period the hyperleptinemia was significantly reduced Nevertheless, the normality values were not reestablished, confirming thus, the need of long term treatment for the hormonal and metabolic adjustments which favor the MRM increase and consequently more easiness for the negative energetic balance obtaining and adipose mass reduction.

    FINAL CONSIDERATIONS

    Therefore, although the exact combination is still unknown, the development of training programs which maximize the EPOC may be an important factor to the ponderal reduction(9,54). Although the energetic cost of EPOC in a training session is small, its cumulative effect could have a positive impact in the obesity panorama. The same thought is valid for the RMR. Nonetheless, it is worth mentioning that the weight loss and EPOC have not been confirmed. Further studies are necessary in order to better understand this issue.

    REFERENCES

  • Rua Igaraúnas, 70, Floramar

    31840-330 – Belo Horizonte, MG

  • Received in 27/12/05. Final version received in 30/7/06. Approved in 24/8/06.

    All the authors declared there is not any potential conflict of interests regarding this article.

    • 1. Levine J, Melanson EL, Weslertep KR, Hill JO. Measurement of the components of nonexercise activity thermogenesis. Am J Physiol. 2001;281:670-5.

    • 2. Hill JA, Melby C, Johnson SL, Peters IC. Physical activity and energy requirements. Am J Clin Nutr. 1995;62(s):1059-66.

    • 3. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc. 1984;16(1):29-43.

    • 4. Bahr R, Sejersted OM. Effect of feeding and fasting on excess postexercise oxygen consumption. J Appl Physiol. 1991;71(6):2088-93.

    • 5. Thorton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc. 2002;34(4):715-22.

    • 6. Trost S, Wilcox A, Gillis D. The effect of substrate utilization, manipulated by nicotinic acid, on excess postexercise oxygen consumption. Int J Sports Med. 1997;18(2):83-8.

    • 7. Borsheim E, Bahr R, Hansson P, Gullestad L, Hallén J, Sejersted OM. Effect of beta-adrenoceptor blockade on post-exercise oxygen consumption. Metabolism. 1994;43(5):565-71.

    • 8. Melby CL, Tincknell T, Schmidt WD. Energy expenditure following a bout of non-steady state resistance exercise. J Sports Med Phys Fitness. 1992;32(2):128-35.

    • 9. Quinn TJ, Vroman NB, Kertzer R. Postexercise oxygen consumption in trained females: effect of exercise duration. Med Sci Sports Exerc. 1994;26(7):908-13.

    • 10. Bahr R, Ingnes I, Vaage O, Sejersted OM, Newsholme EA. Effect of duration on excess. J Appl Physiol. 1987;62(2):485-90.

    • 11. Dolezal BA, Potteiger JA, Jacobsen DJ, Benedict SF. Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Med Sci Sports Exerc. 1999;35(s):311.

    • 12. Gore CJ, Withers RT. Effect of exercise intensity and duration on postexercise metabolism. J Appl Physiol. 1990;68(6):2362-8.

    • 13. Laforgia J, Withers RT, Shipp NJ, Gore CJ. Comparison of energy expenditure elevations after submaximal and supramaximal running. J Appl Physiol. 1997; 82(2):661-6.

    • 14. Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83:153-9.

    • 15. Schuenke MD, Mikat RP, McBride JM. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. Eur J Appl Physiol. 2002;86(5):411-7.

    • 16. Murphy E, Schwarzkopf R. Effects of standard set and circuit weight training on excess post-exercise oxygen consumption. J Appl Sport Sci. 1992;6:88-91.

    • 17. Short KR, Wiest JM, Sedlock DA. The effect of upper body exercise intensity and duration on post-exercise oxygen consumption. Int J Sports Med. 1996; 17(8):559-63.

    • 18. Williams IT, Pricher MP, Halliwill JR. Is postexercise hypotension related to excess postexercise oxygen consumption through changes in leg blood flow? J Appl Physiol. 2005;98:1463-8.

    • 19. Hunter GR, Weinsier RL, Bamman, MM, Larson DE. A role for high intensity exercise on energy balance and weight control. Int J Obes. 1998;22:489-93.

    • 20. Brockman L, Berg K, Latin R. Oxygen uptake during recovery from intense intermittent running and prolonged walking. J Sports Med Phys Fitness. 1993;33: 330-6.

    • 21. Meirelles CM, Gomes PSC. Efeitos da atividade contra-resistência sobre o gasto energético: revisitando o impacto das principais variáveis. Rev Bras Med Esporte. 2004;10(2):122-30.

    • 22

      World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 1998.

    • 23. Foreyt J, Goodrick K. The ultimate triumph of obesity. Lancet. 1995;346:134-5.

    • 24. Dâmaso A. Obesidade. São Paulo: Medsi, 2003.

    • 25. Imamura H, Shibuya S, Uchida K, Teshima K, Masuda R, Miyamoto N. Effect of moderate exercise on excess post-exercise oxygen consumption and catecholamines in young women. J Sports Med Phys Fitness. 2004;44:23-9.

    • 26. Borsheim E, Knardahl S, Hostmark AT, Bahr R. Adrenergic control of post-exercise metabolism: recovery processes after exercise. Act Physiol Scand. 1998; 162(3):313-23.

    • 27. Sedlock DA, Schneider A, Gass E, Gass G. Excess post-exercise oxygen consumption in spinal cord-injured men. Eur J Appl Physiol. 2004;93:231-6.

    • 28. French SA, Jeffery RW, Forster JL, Mcgovern PG, Kelder SH, Baxter JE. Predictors of weight change over two years among a population of working adults: the healthy worker project. Int J Obes. 1998;18:145-54.

    • 29. Kaminsky LA, Padjen S, LaHam-Seger J. Effect of split exercise sessions on excess post-exercise oxygen consumption. Br J Sports Med. 1990;24(2):95-8.

    • 30. Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33(14):1037-60.

    • 31. Ryan AS, Pratley RE, Elahi D, Goldberg AP. Resistive training increases fat-free mass and maintains RMR despite weight loss in postmenopausal women. J Appl Physiol. 1995;79(3):818-23.

    • 32. Burleson MA, Bryant HS, Stone MH, Collins MA, McBride TT. Effect of weight training exercise and treadmill exercise on post-exercise oxygen consumption. Med Sci Sports Exerc. 1998;30(4):518-22.

    • 33. Kraemer WJ, Marchitelli L, Mccurry D, Gordon SE, Harman E, Dziados IE, et al. Hormonal and growth factor responses to heavy resistance exercise. J Appl Physiol. 1990;69:1442-50.

    • 34. Kraemer WJ, Fry AC, Warren BJ, Stone MH, Fleck SJ, Kearney IT, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med. 1992;13:103-9.

    • 35. Bielinski R, Schutz Y, Jequier E. Energy metabolism during the postexercise recovery in man. Am J Clin Nutr. 1985;42(1):69-82.

    • 36. Haltom RW, Kraemer RR, Sloan RA, Hebert EP, Frank K, Tryniecki JL. Circuit weight training and its effects on excess postexercise oxygen consumption. Med Sci Sports Exerc. 1999;31(11):1613-8.

    • 37. Dawson B, Straton S, Randall N. Oxygen consumption during recovery from prolonged submaximal cycling below the anaerobic threshold. J Sports Med Phys Fitness. 1996;36:77-84.

    • 38. Melby C, Scholl C, Edwards G, et al. Effect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J Appl Physiol. 1993; 75(4):1847-53.

    • 39. Binzen CA, Swann PD, Manore MM. Postexercise oxygen consumption and substrate use after resistance exercise in women. Med Sci Sports Exerc. 2001; 33(6):932-8.

    • 40. Ballor DJ, Harvey-Berino JR, Ades PA, Cryan J, Calles-Escandon J. Contrasting effects of resistance and aerobic training on body composition and metabolism after diet-induced weight loss. Metabolism. 1996;45(2):179-83.

    • 41. Kaminsky LA, Knowlton RG, Perkins RM, Hetzler RK. Relationships of aerobic capacity and percent fat with plasma free fatty acid following walking. Am J Clin Nutr. 1986;44:603-9.

    • 42. Poehlman ET, Denino WF, Beckett T, Kinaman KA, Dionne IJ, Dvorak R, et al. Effects of endurance and resistance training on total daily energy expenditure in young women: a controlled randomized trial. J Clin Endocrinol Metab. 2002;87(3): 1004-9.

    • 43. Speakman JR, Selamn C. Physical activity and resting metabolic rate. Proc Nutr Soc. 2003;62:621-34.

    • 44. Osterberg KL, Melby CL. Effect of acute resistance exercise on post-exercise oxygen consumption and RMR in young women. Int J Sport Nutr Exerc Metab. 2000;10:71-81.

    • 45. Pratley R, Nicklas B, Rubin M, Miller J, Smith M, Smith A, et al. Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65 years-old men. J Appl Physiol. 1994;76:133-7.

    • 46. Freake HC, Oppenheimer JH. Thermogenesis and thyroid function. Annu Rev Nutr. 1995;15:263-91.

    • 47. Barbe P, Millet L, Larrouy D, Galitzky J, Berlan M, Louvet J, Langin D. Uncoupling protein-2 messenger ribonucleic acid expression during very-low-calorie diet in obese pre-menopausal women. J Clin Endrocrinol Metab. 1998;83:2450-3.

    • 48. Riccioni G, Menna V, Lambo MS, Della Vecchia R, Di llio C, et al. Leptin and hypothalamus-hypophysis-thyroid axis. Clin Ter. 2004;155(1):29-31.

    • 49. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydox J, et al. Uncoupling protein-3: e new member of the mitochondrial carrier family with tissue-specific expression. FEBS Letters. 1997;408:39-42.

    • 50. Lanouette CM, Giacobino JP, Perusse L, Lacaille M, Yvon C, Chagnon M, et al. Association between uncoupling protein 3 gene and obesity-related phenotypes in the Quebec Family Study. Mol Med. 2001;7(7):433-41.

    • 51. Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch P. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia and AMP-activated protein kinase. Am J Physiol. 2000;279:E622-9.

    • 52. Scarpage PJ, Matheny M, Pollock BH, Tumer N. Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol. 1997;273(1 Pt 1):E226-30.

    • 53. Damaso AR, Tock l, Tufik S, Prado WL, Stella SG, Fisberg M, et al. Tratamento multidisciplinar reduz o tecido adiposo visceral, leptina, grelina e a prevalência de esteatose hepática não alcoólica (NAFLD) em adolescentes obesos. Rev Bras Med Esporte. 2006;12(5):263-7.

    • 54. Fukuba Y, Yano Y, Murakami H, Kan A, Miura A. The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women. Clin Physiol. 2000;20(2):165-9.

    • 55. Maehlum S, Grandmontagne M, Newsholme EA, Sejersted OM. Magnitude and duration of excess postexercise oxygen consumption in healthy young subjects. Metabolism. 1986;35(5):425-9.

    • 56. Sedlock DA, Fissinger JA, Melby CL. Effect of exercise intensity and duration on postexercise energy expenditure. Med Sci Sports Exerc. 1989;21(6):662-6.

    Correspondence to: Giselle Foureaux Rua Igaraúnas, 70, Floramar 31840-330 – Belo Horizonte, MG E-mail: /

    • Publication in this collection
      01 Apr 2008
    • Date of issue
      Dec 2006

    • Accepted
      24 Aug 2006
    • Reviewed
      30 July 2006
    • Received
      27 Dec 2005