Determine o sinal do seno, cosseno e tangente dos ângulos a seguir

Seno, cosseno e tangente relacionam as medidas dos lados de um triângulo retângulo com as medidas de seus ângulos. São chamados de relações trigonométricas ou razões trigonométricas.

Como essas relações são definidas a partir de um triângulo retângulo, vale relembrar os elementos dessa figura geométrica.

O que é um triângulo retângulo?

Triângulo é um polígono que possui três lados. Quando um dos seus ângulos é igual a 90°, ele é chamado de retângulo.

Observe que o ângulo reto está no vértice C do triângulo. Os lados que partem desse vértice são chamados de adjacentes ao ângulo reto e, na Trigonometria, são conhecidos como catetos. O lado que sobra sempre é o maior do triângulo retângulo e é chamado de hipotenusa.

Afinal, o que é cateto oposto e cateto adjacente?

Para definir seno, cosseno e tangente, é necessário escolher um ângulo como referência. Considere o ângulo α: o cateto BC é o cateto oposto, e o lado AC é o cateto adjacente, pois BC é o lado oposto ao ângulo α. Se escolhermos β como referência, será o contrário: AC será o cateto oposto, e BC, o cateto adjacente, pois, nesse caso, é AC que se opõe ao ângulo em questão.

O que é seno?

O seno do ângulo θ é o nome dado a uma razão entre a medida do cateto oposto a θ e a hipotenusa de um triângulo retângulo. Razão é o resultado de uma divisão em que a ordem imposta deve ser respeitada. Sendo assim, seno é o resultado da divisão da medida do cateto oposto pela medida da hipotenusa:

Senθ = Cateto oposto a θ
          hipotenusa

Uma propriedade importante das razões trigonométricas é a seguinte: o valor do seno, por exemplo, sempre será o mesmo independentemente do comprimento dos catetos ou da hipotenusa. Sua variação ocorre apenas no momento em que se varia o ângulo θ. Isso acontece porque, se dois triângulos retângulos possuem mais um ângulo congruente, esses dois triângulos são semelhantes, logo, a razão entre seus lados possui o mesmo resultado. Para ilustrar essa situação, observe o exemplo a seguir:

Note que existem três triângulos retângulos nessa figura: ACG, ADH e AEF. Note também que os catetos opostos ao ângulo de 30° em cada um desses triângulos são, respectivamente, CG, DH e EF, e as respectivas hipotenusas são AG, AH e AF.

Note também que a razão entre o cateto oposto e a hipotenusa de cada um desses triângulos aproxima-se de 0,5. Aumentando a medida do ângulo θ, aumentamos também o seu seno.

O que é cosseno?

O cosseno do ângulo θ é a razão entre a medida do cateto adjacente a θ e a hipotenusa do triângulo retângulo.

Cosθ = Cateto adjacente a θ
          hipotenusa

A propriedade discutida anteriormente para os senos também é válida para os cossenos.

O que é tangente?

A tangente de um ângulo é a única razão que não envolve a medida da hipotenusa. Ela é dada pela razão entre a medida do cateto oposto e a medida do cateto adjacente ao ângulo θ.

Tgθ =       Cateto oposto a θ     
          Cateto adjacente a θ

A propriedade mencionada tanto para seno quanto para cosseno também vale aqui.

Afinal, para que servem essas razões?

Definitivamente não queremos saber o resultado da divisão entre o cateto oposto e a hipotenusa, por exemplo. Todavia, sabendo que esse resultado vale para quaisquer triângulos com o mesmo ângulo θ, podemos definir uma tabela trigonométrica e usá-la para descobrir valores de lados de um triângulo retângulo quando conhecemos as medidas de um de seus ângulos. Observe:

Exemplo

Calcule a medida x do triângulo a seguir:

Observe que o triângulo acima possui um ângulo reto e um ângulo de 30°. Note também que x é justamente a medida do cateto oposto a 30° e que a hipotenusa mede 5 cm. Com essas informações, qual das três razões trigonométricas é a mais adequada?

A resposta para essa pergunta deve ser seno, pois essa é a única razão trigonométrica que envolve o cateto oposto e a hipotenusa. Substituindo os valores na razão seno, teremos:

Sen30° = x
              5

Como dito, não importam as medidas dos lados de um triângulo. O seno de 30° sempre será igual a 0,5. Assim, podemos substituir:

0,5 = x
        5

5·0,5 = x

x = 2,5

Os valores de seno, cosseno e tangente de cada ângulo podem ser encontrados em uma tabela de razões trigonométricas (clique aqui) ou podem ser calculados em uma calculadora científica. Geralmente, é exigido que os alunos saibam os valores de seno, cosseno e tangente para os ângulos de 30°, 45° e 60°, que podem ser encontradas na tabela a seguir:

30°

45°

60°

Sen θ

1
2

√2
2

√3
2

Cos θ

√3
2

√2
2

1
2

Tg θ

√3
3

1

√3

Tabela de valores trigonométricos

Quando estamos trabalhando com Trigonometria e deparamo-nos com um ângulo que não se encontra no primeiro quadrante, sempre podemos reduzi-lo de forma a encontrar o ângulo correspondente a esse que esteja justamente no 1° quadrante. Isso é possível graças à simetria presente no ciclo trigonométrico. Mas precisamos nos atentar para o que ocorre com os sinais das funções trigonométricas em cada quadrante. Vejamos a seguir algumas formas de trabalhar a mudança de quadrante no ciclo trigonométrico.

Redução ao Primeiro Quadrante

Na figura a seguir, considere o ângulo x, destacado em vermelho no primeiro quadrante. Nós podemos encontrar os ângulos que são correspondentes a x nos demais quadrantes. A distância desses ângulos a x é sempre um valor múltiplo de 90°, de modo que o módulo das funções trigonométricas desses ângulos não se altera.


Método prático para redução ao primeiro quadrante

Se o ângulo com o qual estamos trabalhando for y e ele estiver no segundo quadrante, seu correspondente no 1° quadrante será o ângulo x tal que π – x = y ou 180° – x = y.

Exemplo 1:

Considere o ângulo 150°. Para reduzi-lo ao 1° quadrante, teremos o seguinte:

180° – x = 150°
x = 30°

Analogamente, se o ângulo y pertencer ao terceiro quadrante, seu correspondente x no primeiro quadrante será dado por x + π = y ou 180° + x = y.

Exemplo 2:

Considere o ângulo 4π/3, seu correspondente será:

x + π = 4π
            3

x = 4π – π
3

x = π
     3

Por fim, se o ângulo analisado y pertencer ao quarto quadrante, o ângulo x correspondente a ele no primeiro quadrante será dado por 2π – x = y ou 360° – x = y.

Exemplo 3:

Considere o ângulo 300°, reduzindo-o ao primeiro quadrante, teremos:

360° – x = 300°
x = 60°

Vale lembrar que os ângulos correspondentes possuem valores parecidos de seno, cosseno e tangente, e a distinção ocorre pelo sinal. No primeiro quadrante, os valores de seno, cosseno e tangente são positivos. No segundo quadrante, o seno é positivo, enquanto o cosseno e a tangente são negativos. No terceiro quadrante, seno e cosseno são negativos, enquanto a tangente é positiva. No quarto quadrante, seno e tangente são negativos, e o cosseno é positivo. Podemos ver a distinção entre os sinais na imagem a seguir:


Confira os sinais das funções trigonométricas de acordo com o quadrante

Por Amanda Gonçalves

Graduada em Matemática

Seno, cosseno e tangente são os nomes dados às razões trigonométricas. Grande parte dos problemas que envolvem cálculos de distância é resolvida utilizando-se a trigonometria. E para isso, é muito importante compreender seus fundamentos, começando pelo triângulo retângulo.

As razões trigonométricas são também muito importantes, pois elas relacionam as medidas de dois lados do triângulo com um dos ângulos agudos, associando essa relação com um número real.

Determine o sinal do seno, cosseno e tangente dos ângulos a seguir
Seno, cosseno e tangente são relações estudadas em triângulos.


Veja mais: Identificando os quadrantes do ciclo trigonométrico

Características do triângulo retângulo

O triângulo retângulo é formado por um ângulo de 90° (ângulo reto). Os demais ângulos são menores que 90º, ou seja, são agudos, e, além disso, sabemos que os maiores lados estão sempre opostos aos maiores ângulos. No triângulo retângulo, o maior lado é chamado de hipotenusa e está “à frente” do ângulo reto, os demais lados são chamados de catetos.

No triângulo acima, temos que os lados que medem c e b são os catetos, e o lado que mede a é a hipotenusa. Em todo triângulo retângulo, a relação conhecia como teorema de Pitágoras é válida.

a2 = b2 + c2           

Os catetos, daqui em diante, também receberão nomes especiais. As nomenclaturas dos catetos dependerão do ângulo de referência. Considerando o ângulo em azul na imagem acima, temos que o cateto que mede b é o cateto oposto, e o cateto que está ao lado do ângulo, ou seja, que mede c é o cateto adjacente.

Seno

Antes de definir uma fórmula para o seno de um ângulo, vamos entender a ideia de seno. Imagine uma rampa, nela podemos determinar a razão entre a altura e o percurso, certo? Essa razão chamaremos de seno do ângulo α.

Assim,

sen α =   altura 
             percurso 

Cosseno

De maneira análoga à ideia do seno, temos o sentido do cosseno, entretanto, em uma rampa, o cosseno é a razão entre o afastamento em relação ao solo e o percurso na rampa.

Assim:

cos α = afastamento
              percurso

Tangente

Também de modo semelhante às ideias de seno e cosseno, a tangente é a razão entre a altura e o afastamento de uma rampa. 

Assim:

tg α = altura
        afastamento

A tangente fornece-nos o índice de subida.

Leia também: Trigonometria em um triângulo qualquer

Relação entre seno, cosseno e tangente

De modo geral, podemos definir então seno, cosseno e tangente em um triangulo retângulo qualquer utilizando as ideias anteriores. Veja a seguir:

Tomando primeiramente o ângulo α como referencial, temos:

sen α =   Cateto oposto  =  c
                 Hipotenusa         a

cos α =   Cateto adjacente  =  b
                     Hipotenusa          a

tg α =   Cateto oposto       =     c
           Cateto adjacente           b

Tomando agora o ângulo β como referencial, temos:

sen β =   Cateto oposto  =  b
                Hipotenusa          a

cos β =   Cateto adjacente  =  c
                     Hipotenusa          a

tg β =   Cateto oposto       = b
            Cateto adjacente      c

Tabelas trigonométricas

Existem três valores de ângulos que devemos saber. São eles:

Os demais valores são dados nos enunciados dos exercícios ou podem ser conferidos na tabela seguinte, mas não se preocupe, não é necessário tê-los memorizados (exceto os da tabela anterior).

Ângulo  (°)

seno

cosseno

tangente

Ângulo (°)

seno

cosseno

tangente

1

0,017452

0,999848

0,017455

46

0,71934

0,694658

1,03553

2

0,034899

0,999391

0,034921

47

0,731354

0,681998

1,072369

3

0,052336

0,99863

0,052408

48

0,743145

0,669131

1,110613

4

0,069756

0,997564

0,069927

49

0,75471

0,656059

1,150368

5

0,087156

0,996195

0,087489

50

0,766044

0,642788

1,191754

6

0,104528

0,994522

0,105104

51

0,777146

0,62932

1,234897

7

0,121869

0,992546

0,122785

52

0,788011

0,615661

1,279942

8

0,139173

0,990268

0,140541

53

0,798636

0,601815

1,327045

9

0,156434

0,987688

0,158384

54

0,809017

0,587785

1,376382

10

0,173648

0,984808

0,176327

55

0,819152

0,573576

1,428148

11

0,190809

0,981627

0,19438

56

0,829038

0,559193

1,482561

12

0,207912

0,978148

0,212557

57

0,838671

0,544639

1,539865

13

0,224951

0,97437

0,230868

58

0,848048

0,529919

1,600335

14

0,241922

0,970296

0,249328

59

0,857167

0,515038

1,664279

15

0,258819

0,965926

0,267949

60

0,866025

0,5

1,732051

16

0,275637

0,961262

0,286745

61

0,87462

0,48481

1,804048

17

0,292372

0,956305

0,305731

62

0,882948

0,469472

1,880726

18

0,309017

0,951057

0,32492

63

0,891007

0,45399

1,962611

19

0,325568

0,945519

0,344328

64

0,898794

0,438371

2,050304

20

0,34202

0,939693

0,36397

65

0,906308

0,422618

2,144507

21

0,358368

0,93358

0,383864

66

0,913545

0,406737

2,246037

22

0,374607

0,927184

0,404026

67

0,920505

0,390731

2,355852

23

0,390731

0,920505

0,424475

68

0,927184

0,374607

2,475087

24

0,406737

0,913545

0,445229

69

0,93358

0,358368

2,605089

25

0,422618

0,906308

0,466308

70

0,939693

0,34202

2,747477

26

0,438371

0,898794

0,487733

71

0,945519

0,325568

2,904211

27

0,45399

0,891007

0,509525

72

0,951057

0,309017

3,077684

28

0,469472

0,882948

0,531709

73

0,956305

0,292372

3,270853

29

0,48481

0,87462

0,554309

74

0,961262

0,275637

3,487414

30

0,5

0,866025

0,57735

75

0,965926

0,258819

3,732051

31

0,515038

0,857167

0,600861

76

0,970296

0,241922

4,010781

32

0,529919

0,848048

0,624869

77

0,97437

0,224951

4,331476

33

0,544639

0,838671

0,649408

78

0,978148

0,207912

4,70463

34

0,559193

0,829038

0,674509

79

0,981627

0,190809

5,144554

35

0,573576

0,819152

0,700208

80

0,984808

0,173648

5,671282

36

0,587785

0,809017

0,726543

81

0,987688

0,156434

6,313752

37

0,601815

0,798636

0,753554

82

0,990268

0,139173

7,11537

38

0,615661

0,788011

0,781286

83

0,992546

0,121869

8,144346

39

0,62932

0,777146

0,809784

84

0,994522

0,104528

9,514364

40

0,642788

0,766044

0,8391

85

0,996195

0,087156

11,43005

41

0,656059

0,75471

0,869287

86

0,997564

0,069756

14,30067

42

0,669131

0,743145

0,900404

87

0,99863

0,052336

19,08114

43

0,681998

0,731354

0,932515

88

0,999391

0,034899

28,63625

44

0,694658

0,71934

0,965689

89

0,999848

0,017452

57,28996

45

0,707107

0,707107

1

90

1


Saiba também: Secante, cossecante e cotangente

Exercícios resolvidos

Questão 1 -  Determine o valor de x e y no triângulo a seguir.

Solução:

Veja no triângulo que o ângulo dado foi de 30°. Observando ainda o triângulo, temos que o lado que mede x é o cateto oposto ao ângulo de 30°, e o lado que mede y é o cateto adjacente ao ângulo de 30°. Assim, devemos buscar uma razão trigonométrica que relacione o que procuramos com que é dado (hipotenusa). Logo:

sen 30° =   Cateto oposto 
                    Hipotenusa    

cos 30° =   Cateto adjacente 
                      Hipotenusa      

Determinado o valor de x:

sen 30° =  Cateto oposto 
                            Hipotenusa           

sen 30° =  x
                  2

Olhando na tabela, temos que:

sen 30° = 1
                 2

Substituindo na equação, teremos:

1 = x
2    2

x = 1

De modo análogo, consideraremos

Assim: 

Cos 30° = √3 
                  2

cos 30° =   Cateto adjacente 
                       Hipotenusa 

cos 30° = Y
                     2     

√3 = Y
 2     2

y = √3

Questão 2 – (PUC-SP) Qual é o valor de x na figura seguinte?

Solução:

Visualizando o triângulo maior, observe que y é oposto ao ângulo de 30° e que 40 é a hipotenusa, ou seja, podemos usar a razão trigonométrica seno.

sen 30° = Y
               40

    1   =  Y
     2      40

    2 y = 40
     y = 20

Olhando agora para o triângulo menor, veja que temos o valor do cateto oposto e buscamos o valor de x, que é o cateto adjacente. A relação trigonométrica que envolve esses dois catetos é a tangente. Assim:

tg 60°  = 20
               x

√3= 20
       x

√3 x = 20

x = 20  ·  √3
     √3     √3

x = 20√3
       3
 

Por Robson Luiz
Professor de Matemática