Considere um poliedro que possui apenas 4 faces regulares, sendo todas elas do formato triangular.

Quando estudamos os poliedros, nos deparamos com os sólidos de Platão como caso particular. Para ser um sólido de Platão, o poliedro precisa satisfazer três condições:

  • ser convexo;

  • todas as faces possuírem a mesma quantidade de arestas;

  • todos os vértices serem extremidades de uma mesma quantidade de arestas.

Vários filósofos buscaram compreender a origem do Universo, e Platão viu na geometria espacial a explicação para essa origem. Os sólidos de Platão são:

  • tetraedro;

  • hexaedro;

  • octaedro;

  • dodecaedro;

  • icosaedro.

Todos eles são considerados polígonos regulares, já que as suas arestas e suas faces são todas congruentes. Os sólidos de Platão respeitam a relação de Euler, que relaciona o número de vértices, faces e arestas pela fórmula V + F = A + 2.

Leia também: Quais as diferenças entre as figuras planas e as espaciais?

Considere um poliedro que possui apenas 4 faces regulares, sendo todas elas do formato triangular.
Sólidos de Platão

Poliedros regulares

A busca por poliedros regulares é recorrente, pois é mais fácil trabalhar com eles. Um poliedro é classificado como regular se ele possui todas as faces formadas por um mesmo polígono congruente. Quando isso ocorre, os ângulos e arestas também são congruentes.

Os sólidos de Platão são casos particulares de poliedros regulares. O cubo, por exemplo, que é um sólido de Platão, possui todas as suas faces formadas por quadrados congruentes. Dos cinco sólidos de Platão, três são formados por faces triangulares com triângulos congruentes, um é formado por faces quadradas e o outro é formado por faces pentagonais.

Platão foi um filósofo e matemático grego. Ele realizou grandes contribuições para a matemática e, na tentativa de compreender o Universo, associou os sólidos a elementos da natureza.

Para ser um sólido platônico, o poliedro precisa ser regular e convexo. Existem apenas cinco sólidos que satisfazem essa definição. São eles: o tetraedro, o cubo ou hexaedro, o octaedro, o icosaedro e o dodecaedro.

A relação feita entre o elemento da natureza e o sólido foi:

  • tetraedro – fogo

  • hexaedro – terra

  • octaedro – ar

  • icosaedro – água

  • dodecaedro – Cosmo ou Universo

Para ser um sólido de Platão, o poliedro também precisa ser convexo, todas as faces devem apresentar a mesma quantidade de arestas e todos os vértices devem ser extremidades de uma mesma quantidade de arestas.

Veja também: Paralelepípedos – sólidos geométricos formados por faces planas e poligonais

O tetraedro regular é um poliedro que possui 4 faces, o que justifica o seu nome (tetra = quatro). Todas as suas faces são formadas por triângulos. Ele possui formato de uma pirâmide de base triangular e é conhecido como pirâmide de base regular, já que todas as suas faces são congruentes. Possui um total de 4 faces (em formato de triângulo equilátero), 4 vértices e 6 arestas.

Caso você queira montar seu próprio tetraedro regular, é só baixar e imprimir o PDF aqui.

O hexaedro regular possui 6 faces, o que justifica o seu nome (hexa = seis). As suas faces são todas quadradas. Ele é conhecido também como cubo e possui 6 faces, 12 arestas e 8 vértices.

Caso você queira montar seu próprio cubo, é só baixar e imprimir o PDF aqui.

Assim como os anteriores, o nome está ligado ao número de faces, logo o octaedro possui 8 faces. Essas faces possuem formato de triângulo equilátero. O octaedro possui 8 faces, 12 arestas e 6 vértices.

Caso você queira montar seu próprio octaedro, é só baixar e imprimir o PDF aqui.

O icosaedro possui um total de 20 faces. As suas faces possuem formato de triângulos equiláteros, assim como o octaedro. Ele possui um total de 20 faces, 30 arestas e 12 vértices.

Caso você queira montar seu próprio icosaedro, é só baixar e imprimir o PDF aqui.

O dodecaedro é o último dos sólidos de Platão. Possui um total de 12 faces e é considerado o mais harmônico entre os cinco sólidos platônicos. Suas faces possuem formato de pentágonos. Apresenta 12 faces, 30 arestas e 20 vértices.

Caso você queira montar seu próprio dodecaedro, é só baixar e imprimir o PDF aqui.

Acesse também: Cilindro – sólido geométrico formado por duas faces circulares paralelas e em planos distintos

Fórmula de Euler

Os poliedros eulerianos são os poliedros convexos. Euler desenvolveu uma fórmula que relaciona o número de faces (F), número de vértices (V) e o número de arestas (A) em um poliedro convexo. Todos os sólidos de Platão satisfazem a relação de Euler.


Analisando a fórmula, é possível então calcular o número de vértices a partir do número de faces e de arestas, ou o número de faces, a partir do número de vértices e arestas, enfim, conhecendo dois dos seus elementos, é sempre possível encontrar o terceiro.

Sabendo que um poliedro possui 8 vértices e 12 arestas e que ele é regular, qual será o número de faces que ele possui?

Sabemos que V + F = A+2

V = 8

A = 12

8 + F = 12 + 2

8 + F = 14

F = 14 – 8

F = 6

Exercícios resolvidos

Questão 1 – (Enem 2016) Os sólidos de Platão são poliedros convexos cujas faces são todas congruentes a um único polígono regular, todos os vértices têm o mesmo número de arestas incidentes e cada aresta é compartilhada por apenas duas faces. Eles são importantes, por exemplo, na classificação das formas dos cristais minerais e no desenvolvimento de diversos objetos. Como todo poliedro convexo, os sólidos de Platão respeitam a relação de Euler V - A + F = 2, em que V, A e F são os números de vértices, arestas e faces do poliedro, respectivamente.

Em um cristal, cuja forma é a de um poliedro de Platão de faces triangulares, qual é a relação entre o número de vértices e o número de faces?

A) 2V – 4F = 4

B) 2V – 2F = 4

C) 2V – F = 4

D) 2V + F = 4

E) 2V + 5F= 4

Resolução

Alternativa C. Como as faces são triangulares, sabemos que, para cada face, há 3 arestas. Porém, para relacionar o número de arestas com o número de faces, é importante lembrar que cada aresta está contida em duas faces, pois o encontro de duas faces forma uma aresta, então podemos relacionar aresta com face nesse caso por:

Tendo a relação de Euler como V – A + F = 2 e substituindo A, temos que:

Questão 2 – Das alternativas abaixo, julgue qual delas não é um sólido de Platão.

A) Cubo

B) Tetraedro Regular

C) Icosaedro

D) Dodecaedro

E) Cone

Resolução:

Alternativa E. Das alternativas, a única que não corresponde a um sólido de Platão é o cone.

Por Raul Rodrigues de Oliveira
Professor de Matemática

Poliedros (do latim poli — muitos — e edro — face) são figuras tridimensionais formadas pela união de polígonos regulares, na qual os ângulos poliédricos são todos congruentes. A união desses polígonos forma elementos que compõem o poliedro, são eles: vértices, arestas e faces. No entanto, nem toda figura tridimensional é um poliedro, um exemplo disso são as figuras que possuem faces curvas chamadas de corpos redondos.

Existe uma fórmula matemática que relaciona os elementos de um poliedro chamada relação de Euler. Além disso, os poliedros dividem-se em dois grupos: os chamados poliedros convexos e os não convexos. Alguns poliedros merecem uma atenção especial, são os chamados poliedros de Platão: tetraedro, hexaedro, octaedro, dodecaedro e icosaedro.

Leia também: Diferenças entre figuras planas e espaciais

Poliedros convexos

Um poliedro será convexo quando for formado por polígonos convexos, de forma que as condições a seguir sejam aceitas:

  1. Dois dos polígonos nunca são coplanares, ou seja, não pertencem ao mesmo plano.
  2. Cada lado de um desses polígonos pertence a apenas dois polígonos.
  3. O plano que contém qualquer um desses polígonos deixa os demais polígonos no mesmo semiespaço.

Leia também: Soma dos ângulos internos e externos de um polígono convexo

Elementos de um poliedro convexo

Considere este poliedro convexo:

Os quadriláteros na figura são chamados de faces do poliedro.

Os pentágonos são as faces e a base do poliedro, que recebe o nome de poliedro de base pentagonal.

Os segmentos que formam cada uma das faces são denominados arestas do poliedro.

Os pontos em que as arestas encontram-se são denominados vértices.

O segmento de reta JC será denominado diagonal do poliedro, denotada por:

JC é uma das diagonais, entendemos diagonal do poliedro como sendo o segmento de reta que une dois vértices não pertencentes à mesma face.

Temos também o ângulo poliédrico, formado entre as arestas, denotado por:

Um ângulo poliédrico é chamado de triédrico quando três arestas têm origem em um vértice. Da mesma forma, é chamado de tetraédrico, caso quatro arestas tenham origem em um vértice, e assim por diante.

Daqui em diante, estabeleceremos algumas notações, são elas:

Saiba mais: Planificação de sólidos geométricos

Propriedades de um poliedro convexo

A soma das arestas de todas as faces é igual ao dobro do número de arestas do poliedro.

Exemplo

Um poliedro tem 6 faces quadradas. Vamos determinar a quantidade de arestas.

De acordo com a propriedade, basta multiplicar o número de arestas de uma face pela quantidade de faces, e isso é igual ao dobro do número de arestas. Dessa forma:

A soma dos vértices de todas as faces é igual à soma das arestas de todas as faces, que é igual ao dobro do número de arestas.

Exemplo

Um poliedro com 5 ângulos tetraédricos e 4 ângulos hexaédricos. Vamos determinar a quantidade de arestas.

De maneira análoga ao exemplo anterior, a segunda propriedade diz que a soma das arestas de todas as faces é igual ao dobro do número de arestas. O número de arestas é dado pelo produto de 5 por 4 e 4 por 6, pois são 5 ângulos tetraédricos e 4 hexaédricos. Assim:

Poliedros côncavos (não convexos)

Um poliedro é não convexo, ou côncavo, quando tomamos dois pontos em faces distintas e a reta r que contém esses pontos não fica toda contida no poliedro.

Perceba que a reta (em azul) não está por completa no poliedro, assim o poliedro (em rosa) é côncavo ou não convexo.

Poliedros regulares

Dizemos que um poliedro é regular quando suas faces são polígonos regulares iguais entre si e com os ângulos poliédricos todos iguais.

Veja alguns exemplos:

Perceba que todas as suas faces são polígonos regulares. Suas faces são formadas por quadrados e as arestas são todas congruentes, ou seja, possuem a mesma medida.

Leia também: O que são polígonos regulares e convexos?

Relação de Euler

Também conhecido como teorema de Euler, o resultado foi provado por Leonhard Euler (1707 - 1783) e garante que em todo poliedro convexo fechado é válida a seguinte relação:

Poliedros de Platão

É chamado de poliedro de Platão todo poliedro que satisfaz as condições seguintes:

  1. É valida a relação de Euler

  2. Todas as faces apresentam o mesmo número de arestas

  3. Todos os ângulos poliédricos possuem o mesmo número de arestas

É provado que existem somente cinco poliedros regulares e convexos, ou poliedros de Platão, são eles:

O tetraedro possui 4 faces triangulares congruentes e 4 ângulos triédricos congruentes.

O hexaedro possui 6 faces quadrangulares congruentes e 8 ângulos triédricos congruentes.

O octaedro possui 8 faces triangulares congruentes e 6 ângulos tetraédricos congruentes.

O dodecaedro possui 12 faces pentagonais congruentes e 20 ângulos triédricos congruentes.

O icosaedro possui 20 faces triangulares congruentes e 12 ângulos pentaédricos congruentes.

Exercícios resolvidos

1) (Enem) Uma joia foi lapidada na forma de um poliedro convexo de 32 faces, sendo que 20 dessas são hexaedros e as restantes são pentagonais. Essa joia será um presente para uma senhora que está fazendo aniversário, completando uma idade cujo número é a quantidade de vértices desse poliedro. Essa senhora está completando:

a) 90 anos

b) 72 anos

c) 60 anos

d) 56 anos

e) 52 anos

Solução:

Da propriedade 1 de poliedros convexos sabemos que:

Agora, como conhecemos o número de arestas e o número de faces, podemos utilizar a relação de Euler.

Como a idade que a senhora está completando é igual ao número de vértices, então essa é de 60 anos. Alternativa c.

2) (PUC-SP) Quantas arestas tem um poliedro convexo de faces triangulares em que o número de vértices é três quintos do número de faces?

a) 60

b) 30

c) 25

d) 20

e) 15

Solução:

Das propriedades de um poliedro convexo e do enunciado do exercício temos que:

Substituindo esses valores na relação de Euler, teremos o seguinte:

Organizando a equação anterior e resolvendo a equação em F, segue que:

Substituindo o valor da quantidade de faces encontrado na equação das arestas, teremos:

Alternativa b

Por Robson Luiz
Professor de Matemática