In scoliosis imaging breast tissue dose for PA imaging is approximately of the dose for AP imaging

  1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.

    Article  PubMed  Google Scholar 

  2. Deng M, Hui SC, Yu FW, Lam TP, Qiu Y, Ng BK, et al. MRI-based morphological evidence of spinal cord tethering predicts curve progression in adolescent idiopathic scoliosis. Spine J. 2015;15:1391–401.

    Article  PubMed  Google Scholar 

  3. Shah DJ, Sachs RK, Wilson DJ. Radiation-induced cancer: a modern view. Br J Radiol. 2012;85:e1166–73.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 2012;751:158–246.

    CAS  Article  PubMed  Google Scholar 

  5. Levy AR, Goldberg MS, Hanley JA, Mayo NE, Poitras B. Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys. 1994;66:621–33.

    CAS  Article  PubMed  Google Scholar 

  6. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976). 2000;25:2052–63.

    CAS  Article  Google Scholar 

  7. Bone CM, Hsieh GH. The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop. 2000;20:251–4.

    CAS  PubMed  Google Scholar 

  8. Goldberg MS, Mayo NE, Levy AR, Scott SC, Poitras B. Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology. 1998;9:271–8.

    CAS  Article  PubMed  Google Scholar 

  9. Akhtar W, Aslam M, Ali A, Mirza K, Ahmad N. Film retakes in digital and conventional radiography. J Coll Physicians Surg Pak. 2008;18:151–3.

    PubMed  Google Scholar 

  10. Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative Radiation Exposure With EOS Imaging Compared With Standard Spine Radiographs. Spine Deformity. 2015;3:144–50.

    Article  PubMed  Google Scholar 

  11. Levy AR, Goldberg MS, Mayo NE, Hanley JA, Poitras B. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 1996;21:1540–7. discussion 8.

    CAS  Article  Google Scholar 

  12. Knott P, Pappo E, Cameron M, Demauroy J, Rivard C, Kotwicki T, et al. SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis. Scoliosis. 2014;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Charpak G, Bouclier R, Bressani T, Favier J, Zupancic C. Use of Multiwire Proportional Counters to Select and Localize Charged Particles. Nucl Instrum Methods. 1968;62:262.

    Article  Google Scholar 

  14. Amzallag-Bellenger E, Uyttenhove F, Nectoux E, Moraux A, Bigot J, Herbaux B, et al. Idiopathic scoliosis in children and adolescents: assessment with a biplanar X-ray device. Insights Imaging. 2014;5:571–83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Begon M, Scherrer SA, Coillard C, Rivard CH, Allard P. Three-dimensional vertebral wedging and pelvic asymmetries in the early stages of adolescent idiopathic scoliosis. Spine J. 2015;15:477–86.

    Article  PubMed  Google Scholar 

  16. Courvoisier A, Drevelle X, Vialle R, Dubousset J, Skalli W. 3D analysis of brace treatment in idiopathic scoliosis. Eur Spine J. 2013;22:2449–55.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Briot K, Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C. Diagnosis of vertebral fractures using a low-dose biplanar imaging system. Osteoporos Int. 2015;26:2649–55.

    CAS  Article  PubMed  Google Scholar 

  18. Buck FM, Guggenberger R, Koch PP, Pfirrmann CW. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol. 2012;199:W607–12.

    Article  PubMed  Google Scholar 

  19. Rosskopf AB, Ramseier LE, Sutter R, Pfirrmann CW, Buck FM. Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CT. AJR Am J Roentgenol. 2014;202:W285–91.

    Article  PubMed  Google Scholar 

  20. Kadoury S, Shen J, Parent S. Global geometric torsion estimation in adolescent idiopathic scoliosis. Med Biol Eng Comput. 2014;52:309–19.

    Article  PubMed  Google Scholar 

  21. Meyrignac O, Moreno R, Baunin C, Vial J, Accadbled F, Sommet A, et al. Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiation. Eur Radiol. 2015;25:1752–60.

    Article  PubMed  Google Scholar 

  22. Ilharreborde B, Vidal C, Skalli W, Mazda K. Sagittal alignment of the cervical spine in adolescent idiopathic scoliosis treated by posteromedial translation. Eur Spine J. 2013;22:330–7.

    Article  PubMed  Google Scholar 

  23. Sutter R, Pfirrmann CW, Espinosa N, Buck FM. Three-dimensional hindfoot alignment measurements based on biplanar radiographs: comparison with standard radiographic measurements. Skeletal Radiol. 2013;42:493–8.

    Article  PubMed  Google Scholar 

  24. Morvan G, Mathieu P, Vuillemin V, Guerini H, Bossard P, Zeitoun F, et al. Standardized way for imaging of the sagittal spinal balance. Eur Spine J. 2011;20 Suppl 5:602–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lazennec JY, Rousseau MA, Rangel A, Gorin M, Belicourt C, Brusson A, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97:373–80.

    CAS  Article  PubMed  Google Scholar 

  26. Somoskeoy S, Tunyogi-Csapo M, Bogyo C, Illes T. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J. 2012;12:1052–9.

    Article  PubMed  Google Scholar 

  27. Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976). 2012;37:1391–7.

    Article  Google Scholar 

  28. Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard JM, et al. Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28:557–61.

    CAS  Article  PubMed  Google Scholar 

  29. Deschenes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976). 2010;35:989–94.

    Article  Google Scholar 

  30. Damet J, Fournier P, Monnin P, Sans-Merce M, Ceroni D, Zand T, et al. Occupational and patient exposure as well as image quality for full spine examinations with the EOS imaging system. Med Phys. 2014;41(6):063901. http://onlinelibrary.wiley.com/wol1/doi/10.1118/1.4873333/full.

  31. Ilharreborde B, Ferrero E, Alison M, Mazda K. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J. 2016;25:526–31.

    Article  PubMed  Google Scholar 

  32. Servomaa A, Tapiovaara M. Organ Dose Calculation in Medical X Ray Examinations by the Program PCXMC. Radiat Prot Dosim. 1998;80:213–9.

    Article  Google Scholar 

  33. Kogon PL, Lumsden R. How do you critique your radiographs? J Can Chiropr Assoc. 1993;37:230–2.

    PubMed Central  Google Scholar 

  34. Cook JV, Kyriou JC, Pettet A, Fitzgerald MC, Shah K, Pablot SM. Key factors in the optimization of paediatric X-ray practice. Br J Radiol. 2001;74:1032–40.

    CAS  Article  PubMed  Google Scholar 

  35. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007; 37:1-332.

  36. Canadian Nuclear Safety Commission. Fact sheet – Natural background radiation. 2014-11-19 2013. http://nuclearsafety.gc.ca/eng/pdfs/Fact_Sheets/Fact-Sheet-Background-Radiation-eng.pdf. Accessed Nov 2014.


Page 2

  EOS micro-dose (n = 99) Digital radiography (n = 33) p-value
Age 17.9 (4.8) 15.6 (3.5) 0.01*
Gender 18 male, 81 female 11 male, 22 female  
Risser sign 4.2 (1.0) 4.3 (1.0) 0.70
Height (cm) 161.3 (8.3) 161.3 (11.3) 0.96
Weight (kg) 48.6 (6.6) 51.5 (12.6) 0.22
BMI (kg/m2) 18.7 (2.2) 19.5 (3.0) 0.10
Cobb angle 31.9 (12.7) 26.3 (12.4) 0.02*

  1. *indicates statistically significant difference at 0.05 level